HHPOEKT

«Pa3padoTKa MOJTHOCBA3HBIX rPa()oB B MAIIMHHOM 00y4YEeHH U

Brimonnuna:

CmuproBa Huka CepreesHa,
yuenuna 10 “B” knacca,

MOBY “COIIINe6” . BceBomoxkcka

Hayunb1ii pykoBoIUTEND:
Epémenko Makcum BukropoBuy

JlenuHTpaackas o61acTh
2024-2025

OrnaBiesue

I'nmaBa 1: BBengeHue:
1.1 AKTyanbHOCTB:
1.2 T'unoresa:

1.3 Iens:
1.4 3amaun:

1.5 OOBeKT uccienoBaHus: apXUTEKTYPbl MAILIMHHOTO O0YYEHUS.
1.6 IIpenMer ucciaenoBaHus: MOJTHOCBI3HbBIE TPadbl U KX MPAKTUYECKOE
MIPUMEHEHUE.

1.7 Metonbl uccneqoBaHus:
I'maBa 2: TeopeTnueckas 4acThb:
2.1 BeeneHnue:
2.2 Onpenenenust U3 TeMbl TpadoB U UX UCTOPHUS:
2.3 [lonHOCBsA3HBIE rpadbl U MalMHa bonbimana:
2.4 MamunHoe o0y4yeHue u rpadpsl:
2.5 IIporpammupoBanue rpagos:
2.6 3axiroueHue:
I'maBa 3: IIpakTuueckast 4acTh:
3.1 TectupoBanue MONHBIX TpadoB U 1€PEBHEB KOHTEKCTOB:
3.2 WccnenoBanue cuTyaluii UCIOIb30BaHUS TTOJTHBIX IpadoB
I'mara 4. 3akiroueHue o NpojiesiaHHON padoTe:
I'maBa 5. Ciucok UCMOIb30BAHHOM JIMTEPATYPHI:

W W W NN

I'masa 1: Beenenue:
1.1 AKTyanbHOCTB:

B nmocnemnue rompl HaOmomaeTcs 3HAYMTEIBHBIA POCT HHTEpeca K
MOJIHOCBS3HBIM ~ IpadaM KakK ajJbTepPHATHUBE TPAAUIMOHHBIM JICPEBBSIM
KOHTEKCTOB B oOnacTu wmammHHOTOo oOyuenus [1]. JlanHas TeHaeHIMSA
OOBSACHSIETCA HECKOJIbKUMHU KIIFOUEBBIMU MOMEHTAMH, KOTOPBIE MOIAYEPKUBAIOT
npeuMyniecTBa rpadoBbIX CTPYKTYp B CpPaBHEHUU C HUEPaAPXUUECKUMU
MOJIEISIMU.

Bo-nepBbiX, mNOMHOCBA3HBIE Tpadbl 00JaJal0T BBICOKOM THOKOCThIO. OHU
cocoOHBl 3((PEKTUBHO TMPEACTABIATh CIOXKHBIE B3aUMOCBSI3U MEXTY
JaHHBIMHU, YTO OCOOEHHO Ba)XHO B MHOIOCJIOWHBIX cucTemax. B ommuume or
J€pEBbEB, KOTOPbIE HMEIOT (PUKCUPOBAHHYIO HEPAPXUUYECKYIO CTPYKTYPY,
rpagbl MOTYT JIETKO aJanTHpOBaThCid K HM3MEHEHHsM, oOecrieuuBast Ooiee
TOYHOE OTPaXKEHUE PEaTbHON MPUPOJIbI B3AUMOCBS3EH [2].

Bo-BTOpBIX, WCMONB30BAaHUE TMONHOCBSI3HBIX TPaoB MOXKET 3HAYUTEITHHO
VAYYIIUTh TPOU3BOAUTEIBPHOCTh MOJETEH MamuHHOro o0y4eHus. [padbr
MO3BOJISIIOT OoJiee MTyOOKO aHAIM3UPOBATH B3aUMOCBSI3U MEXIY 3JIEMEHTaMU
JAHHBIX, YTO 0COOCHHO aKTyallbHO B 3ajJlauaX 0OpabOTKM €CTECTBEHHOIO SI3bIKa
[3]. Hanpumep, rpadoBbie MOAEIM CIHOCOOHBI Jydllle 3axBaThIBaTh
CEMaHTUYECKHE CBS3U [4] Mexay ciaoBamMH M ¢pa3aMu, YTO MPUBOAUT K Ooee
TOYHBIM MPEJCKA3aHUSIM U YIYUIIEHHOMY TOHUMaHHUIO KOHTEKCTA.

Kpome Toro, momHOCBs3HBIE Tpadbl JIEMOHCTPUPYIOT BBICOKYIO
MacIITabupyeMoCTb. IDTO CBONCTBO CTAaHOBUTCS KPUTUYECKH BaXXHBIM TpU
pabore ¢ OonplIMMHU OObEMaMHU JAHHBIX, IJI€ TPAAUIIMOHHBIE JIEPEBbSI MOTYT
CTAJIKUBATHCA C OTPAHUYCHUSIMU IO MPOU3BOAUTEILHOCTU U CIOKHOCTH. [padbl
00eCIeYnBalOT BO3MOXHOCTh 00paOOTKH OOJIBIIMX CETeH B3aMMOCBS3EH, YTO
OTKpPBIBA€T HOBBIC TOPU3OHTHI JJIS peaju3aliy CIOXKHBIX 3a7ad B 0o0JlacTu
aHaJn3a JIaHHBIX [5].

Takum 006pazom, epexo OT AEPEBbEB KOHTEKCTOB K MOJIHOCBSA3HBIM I'padam He
TOJIbKO aKTyaJeH, HO W HEOoOXOAUM IS JOCTHIKEHHUsSI 00Jie€ BBICOKHX
pPEe3yJIbTaTOB B aHAIM3€ JaHHBIX M MOCTPOSHUM MPEACKA3aTeNIbHBIX MOJENCH.
UccnenoBanue r1padoBbIX CTPYKTYp B KOHTEKCTE MAIIMHHOTO OOy4eHUs
npeacTaBisieT coObol MHOrooOenarIly0 001acTh, CIIOCOOHYIO 3HAUYUTEIIBHO
IPOJBUHYTHh TEXHOJIOTHMHU B PA3JIMUHBIX 00JIACTSIX, OT 0OPaOOTKH €CTECTBEHHOTO
sI3bIKA JI0 COIMABHBIX ceTeil 1 OMonHGOpMaTHKH [6].

1.2 I'nnioresa:

HMcnonp30oBaHne MOIHOCBI3HBIX Fpa(i)OB B 3aJa4aX MAaIIMHHOI'O 06YT-ICHI/I}I
IIO3BOJINT 3HaAYUTCIIbHO YIYHIINUTD Ka4CCTBO npencxasaHHﬁ 141
IIPONU3BOAUTCILHOCTD MOI[C.]'ICﬁ II0 CPaBHCHHUIO C TPAAUIIHOHHBIMHU ACPCBLAMH
KOHTCKCTOB.

1.3 Iens:

Pa3paborars aiaroputM mno CO3AaHUIO0 MOJHOCBS3HBIX IpaOB B MalIMHHOM
oOy4yeHHH U CpaBHUTh €ro 3(O(PEKTUBHOCTh C CYIIECTBYIOIIMMHU THUIIAMU
apXUTEKTYp B MAIIMHHOM OOYYEHUHU.

1.4 3amaun:

1. AHanu3 CyIECTBYIOIIMX METOJOB W QJITOPUTMOB, MPUMEHSIEMBIX B
MaIllMHHOM OOYYE€HUHU U UCTIONB3YIOIMIUX rpadbl.

2. Pa3zpaboTka anropuTMma, MpoBEACHUE TECTOB €ro padOThl U BHEAPEHUE €TI0
B MOJIEJIM MAIlTUHHOTO 00y4EeHUSI.

3. CpaBHeHHE MPOU3BOAUTENIILHOCTH MOJENed, OCHOBaHHBIX Ha
MOJHOCBA3HBIX Tpadax, ¢ MOJEISIMHU, MCHOJB3YIOIIMMU JI€PEBbS
KOHTEKCTOB, B PEIICHUH 3a/1a4.

1.5 OOBeKT uccienoBaHus: apXUTEKTYPhl MAIIMHHOTO O0YUYEHUSI.
1.6 TlpemMer wccnenoBaHus: TOJTHOCBSI3HBIE Tpadbl U UX MPAKTUYECKOE
MIPUMEHECHHUE.

1.7 MeToanl UCCiIeI0BaHMUA:

1. DkcrepuMeHTaIbHOE HWCCIEAOBAHHUE: IPOBEIECHUE JKCIEPUMEHTOB C
UCIIOJIb30BAaHUEM pa3pa0OTaHHOIO aJlropuT™Ma JUisl CO3JaHHUA
MOJIHOCBA3HBIX T'paOB U aHANU3 pe3yJbTara.

2. CpaBHUTENBHBIN aHATN3: OLIeHKA A((HEKTUBHOCTH MOJHOCBA3HBIX TpadoB
M0 CPAaBHEHUIO C JPYTUMHU METOJaMU MAIIMHHOTO OOy4YeHus (Harpumep,
JEPEBBSIMU PEIICHUM, HEUPOHHBIMU CETSAMH).

3. AHau3 JUTEepaTyphbl: H3y4YEHHE CYIIECTBYIOIIMX HAy4YHBIX paboT u
nyOnuKanmuil Mo TeMe TMOJHOCBSA3HBIX rpadoB M HMX NPUMEHEHHUS B
MalTuHHOM OOYy4YEeHHH.

4. TeopeTnyueckuid aHaaU3 aJrOPUTMOB: HCCIIEIOBAHHE AJTOPUTMOB
MaITMHHOTO OOYYEeHHS C TOUKH 3PEHUS UX CIOKHOCTH U 3(PHEKTUBHOCTH.

I'maBa 2: TeopeTnueckas 4acThb:
2.1 Beenenue:

CoBpeMeHHbIE MOAXOABI K MAIIMHHOMY OOYyYEHHIO BC€ yalle TpeOyroT
WHTETPAllUd CJIOXKHBIX CTPYKTyp JaHHBIX, Takux Kak rpadsl. [padwr,
npeacTaBisiomue coboit Habop y3/10B U pebep, MO3BOJSAIOT MOJIEIHUPOBATH
CIIOKHBIE B3aMMOCBSI3H MEXIy OOBeKTaMU U uX arpuOyTtamu. [lomHOCBSI3HBIE
rpadsl, B YaCTHOCTH, OOECHEYMBAIOT BO3MOYKHOCTb yY€Ta BCEX BO3MOXKHBIX
CBA3CH MEXKIY OJJIEMEHTAMM, YTO 3HAYUTEIBHO pACIIAPSAET BO3MOXKHOCTHU
aHaju3a JaHHBIX. B yCIIOBHSX pacTyllel CHOXKHOCTH 3aJad, CTOAIIMX MEpeN
MalIMHHBIM OOYY€HHEM, HCIIOJIb30BAaHUE TMOJHOCBI3HBIX TpadoB [7] MoxeT
CTaTb KIIOYEBHIM (DAKTOPOM [Jisi TOBBILIEHUS TOYHOCTH TMpPEACKA3aHUM U
IIPOU3BOAUTEIBHOCTH MOJEIEH.

I'padpbr 3HaHMI M Apyrue MONOOHBIE CTPYKTYpPBI YXKe MPOAEMOHCTPUPOBAIU
CBOIO A(PPEKTUBHOCTh B PA3JIMYHBIX O00JACTAX, BKIOYas 00pabOTKy
€CTECTBEHHOIO sI3bIKa U PEKOMEHaTelibHble cucTeMbl. OJJHAKO TPaJUIIMOHHBIE
METOAbl MAIIMHHOTO OOy4YEeHHs, TaKue KakK JEepPEeBbsl PEUICHUM WM JMHEWHbIE
MOJIENIM, YacTO HE CIOCOOHBI MOJHOCTHIO HCIIONIb30BaTh IMPEUMYIIECTBA
rpaoBOi CTPYKTYpBI JaHHBIX. ITO CO3/1aET MOTPEOHOCTH B pa3paboTKe HOBBIX
aJIrOPUTMOB, CIOCOOHBIX 3(PPEKTUBHO PadOTATh C MOJTHOCBI3HBIMU Ipadamu.

Llens maHHOTO MCCIENOBAaHUS 3aKIIOYAETCAd B pa3pabOTKe aiaroputMa s
CO3/IaHMsI TOJHOCBS3HBIX TpadoB B KOHTEKCTE MAIIMHHOTO OOy4YeHHUs U
CpaBHEHUU ero 3(P(PEKTUBHOCTH C CYUIECTBYIOUIMMHU apXuTekrypamu. s
JOCTHXKEHHMSI ATOM LEAM HEoOXOAMMO IPOBECTH aHallu3 CYIIECTBYIOIINUX
METOI0B paboThl ¢ rpadamMu M BBIIBUTH HMX HEIOCTaTkH. Takke BakKHO
ONpPEeNENINTh, KakuM 00pa3oM IOJHOCBSI3HbIE Tpadbl MOTYT YIYYIIUTb
pe3yabpTaThl NIPEICKa3aHUi 10 CPABHEHHIO C TPAIULMOHHBIMU METOIAMM.

3aaun UCCIIeIOBAaHUs BKIIIOUAIOT aHAIN3 CYIIECTBYIOMINX METOI0OB MAITMHHOTO
oOy4YeHHs, KOTOphIE HCIONB3YIOT Tpadsl; pazpabOTKy HOBOTO alrOpUTMa; a
TaKKe TIPOBEJACHUE OKCIIEPUMEHTOB IS OIEHKH ero 3(h(HEKTUBHOCTH.
Oxumaercsi, 9TO pe3yJabTaThl JAHHOTO HMCCIICIOBAHUS HE TOJNHKO MOATBEPISAT
TUIOTE3Y O TMPEUMYIIECTBAX IMOJHOCBSI3HBIX TpadoB, HO U PACIIUAPSAT
TOPU30HTHI YWTATEICH O TPUMEHEHHH T'PaoOBBIX CTPYKTYp B MAaIlIMHHOM
oOy4eHHH.

2.2 Onpenenenust U3 TeMbl IpadoB U UX UCTOPHUSL:

I'padp — »TO Maremarmyeckas CTPyKTypa, COCTOAIIAs M3 JBYX MHOXKECTB:
MHOYECTBa BepUIMH V 1 MHOXecTBa pedep E.

Kaxmoe pebOpo mpeacraBiser co0oOil Mmapy BEpIIWH, YTO I[O3BOJSET
MOJIETTUPOBAaTh OTHOIIEHUS MEXIy oObekTamu. [padpr Moryr ObITH
OPUEHTUPOBAHHBIMHU (rme pebpa UMEIOT HaIlpaBJICHUE) VI
HEOPUEHTUPOBAHHBIMU (Tl HamNpaBlIeHHE OTCYTCTByeT). B 3aBucHMMOCTH OT
CTPYKTYpbl JAaHHBIX, Ipadbl MOTYT ObITh MPOCTHIMH (0€3 MEeTEeNb M KpaTHBIX
pEOep) WK CIOKHBIMU (C METISIMU U KpaTHBIMU PEOpaMu).

I'padbr 0OmamaroT BBICOKOM BBIPA3UTENBHOM CHJIOM, UTO JelaeT uX
MOIXOMSIIUMHE JIUTS TPEACTABICHUS Pa3IUYHBIX THUITOB JaHHBIX. Hampumep, B
COLIMAJIbHBIX CETSAX TMOJIB30BATEIIN MOTYT OBITh Y3JIaMH, a CBSI3U MEKy HUMU —
pebpamu. B GMOI0THM MOJIEKYJIBI MOTYT OBITH MPEICTABICHBI Kak rpadsl, Te
aTOMBI SIBJISIFOTCS Y3JIaMH, @ XAMHUYECKHUE CBSI3U — peOpaMHu.

Bunp! rpados:
Ta6muma Nel - Buasl rpados

I'pad KitoueBbie XapaKkTepUCTUKU

Pe6pa umeroT HampapieHue.

[Tpumep: ConmanbHbie ceTd (APy3bsl, MOANUCYUKH).
PeGpa nanpasnennsie (Hanpumep, A — B).

Moxxer OBITh HECBA3aHHBIM (M30JIMPOBAHHbBIE
BEPLIUHBI).

e [Ipumenenue: MonenupoBaHue HanpaBIEHHBIX
OTHOIIEHUH (HarpuMep, pEKOMEHIALINH).

OpueHTUpOBaHHbBIN
rpad

Pebpa He nMeroT HarpaBIeHUS.

[Tpumep: Jloporu Mexay ropoaaMH.

Pe6pa nByctoponnue (Hampumep, A — B).

CBsI3HBII, €ClIM CyIIECTBYET NYThb MEXIY JIIOOBIMU
JIByMs BEpIITUHAMH.

e [IpumeHeHue: AHnanu3 B3aMMOCBSI3EMN 0e3
HaIpaBJIeHUs (HallpuMep, KiiacTepu3arius).

HeopuentrnpoBaHHbII
rpag

Cwmemannslii rpad

ConmepXUT Kak OpPUCHTUPOBAaHHBIE, TaK M
HEOpPUEHTUPOBaHHbIE PEOPA.

[Tpumep: Cucremsl ¢ pa3HbIMU TUIIAMU CBSI3EH.
CwmemanHas cTpykrypa (Hampumep, A — B u A —
O).

CBS3HOCTb 3aBUCHUT OT CTPYKTYpHhI pEodep.
IIpumenenue: KoMmIiekcHble MOAENM € Pa3HBIMU
THTIAMU B3aUMOJIECUCTBHM.

[Tonnsit rpad

Kaxnas BepmmHa coelMHEHA C KaXI0M JpYyTroMu.
ITpumep: I1onHas ceTp, rae Bce yUaCTHUKU CBSI3aHBI.
Bce Bo3moxHBIE pedpa MPUCYTCTBYIOT.

Bcerna cBs3HbIl (BCe BEPIIMHBI COSUHEHBI).
IIpumenenue: llonHple naHHBIE UIA aHaIM3a BCEX
BO3MOXKHBIX CBSI3EH.

[TycToii rpad

He conepsxur pedep, MOryT ObITh BEPILIUHBI.

[Tpumep: I'pad oe3 B3aMMOJICHCTBUN
(M30IMpPOBAHHBIE Y3IIBI).

Hert pébep, TOJIBKO BEPILIUHBI.

He cBsi3eH (M30J1MpPOBAaHHBIE Y3IIbI).

[Ipumenenue: Mopaenu 0e3 B3aUMOAECUCTBUI IS
aHaIM3a OTIAEIbHBIX OOBEKTOB.

B3Bemennsrii rpad

Kaxnomy peOpy nNprCBOEHO YHCIOBOE 3HAUYEHUE.
IIpumep: TpaHCOpTHBIE C€TH C 3arparaMd Ha
MapuIpyTHI.

Beca MOryr mpencTaBisATh PAcCTOSHHS — WIH
CTOUMOCTb.

CBS3HOCTb 3aBHCHT OT BECOB U CTPYKTYpHI Ipada.
[Ipumenenue: OnTumuzanuss MapuipyToB M 3aTpar B
JIOTUCTHKE.

e Mexy ABYMs BEpIIMHAMH MOXET OBITh HECKOJIBKO

pebdep.
o [Ipumep: TpaHCHOPTHBIE CXEMBI C HECKOIbKUMU
MapIpyTamHu.

MyJIBTI/IFpa(l) ° Pa3peHIeHI>I KpaTHbIC pe6pa MECXKAY y3J1aMH.

® MoxeT ObITh HECBA3AHHBIM (Pa3HbIE KOMIIOHEHTHI).
o Ilpumenenue: MonenupoBaHue aJbTEPHATUBHBIX
IIyTEH B CETSIX.

B xome mnpaktudeckoid paloThl, OyAyT UCCIEI0OBaHbl OPUEHTUPOBAHHBIE,
HEOPUEHTUPOBAHHBIC W B3BEIICHHbIE rpadbl, a TaKKe pPacCMOTPEHBI

MYJII)TI/Il“[zagl!BI.

Uctopus rpados:

Ucropuss rpadoB [8] HaumHaeTcs ¢ pabOTHl IMIBEHIIAPCKOTO MaTeMaTHKa
Jleonapna Jiinepa, koTopblii B 1736 rogy mpemyiokuil pelieHue 3HaMEHUTOM
3amaunn 0 KEHmrcOeprckmx Mocrax. JTa 3a7ada 3aKiIiodaiach B TOM, YTOOBI
MPOMTH MO BCEM MOCTaM TOpojia, HE MPOXOJsl HU MO OJHOMY W3 HUX JBAXbI.
Dilsiep mokaszaj, 4YTO 3TO HEBO3MOXKHO, U TEM CaMbIM 3aJI0KUJI OCHOBBI TE€OPUU
rpadoB, XoTs caM TepMHH "rpad" emie He UCTIOIb30BaJICS.

[lepBoe ynomuHanue cioBa "rpad" B KOHTEKCTE TE€OpUU rpadoB MPOU3OILIO B
1878 rony, xorga anruickuii mateMatuk [[xeriMc CUibBECTp MCTOIB30BAJI €T0
B cBoeil crarbe. OH onuceiBan Tpadbl Kak 0000IIEHHE JUarpamm,
UCIIOJIB3YeMBbIX B XUMHHU M aireope. B 1936 romy BeHTepCcKuii MaTeMaTHK
Henem KEnur omyOnukoBaj MepByr0 KHUTY MO Teopuu rpadoB 1Mo Ha3BaHUEM
"Teopusi KOHEUHBIX U OeCKOHEUHBbIX TpadoB" [9], KoTOpas cucTeMaTu3upoBasa
pe3ynbrarsl 200 1eT uccieI0BaHui B 3TOM 001acTH.

C 1950-x ronoB Teopus rpadoB Havajga aKTHBHO Pa3BUBATHCS OJIarogaps pocTy
KUOCPHETUKU U BBIYMCIUTENbHON TeXHUKHU. [padbl cTanu MCHonb30BaThCs s
MOJIETTUPOBAHMSI PA3NMYHBIX CHCTEM, BKIIOYas COLMAJIbHBIE CETH,
TPAHCIOPTHBIE CETH W KOMIBIOTEPHBIE CETH. DTO BpPEMsl O3HAMEHOBAJIOCH
pa3BUTHEM TAaKUX MOHATUH, Kak rpadoBble HEUPOHHBIE CETU U AITOPUTMBI
IIOMCKA KpaT4yauuero IyTH.

COBpCMCHHBIC HCCJICOIOBAHUA B obOmactu TCOPpUHN Fpa(i)OB OXBAaTbIBAIOT IHI/IpOKI/Iﬁ
CIICKTP HpPIJIO)KCHHﬁ, Ha4duHasa OT OINTUMH3AINHN JIOTUCTHYCCKHUX ITPOLCCCOB N0

aHanu3za OOJBIINX JaHHBIX, JCMOHCTPHUPYsS CBOIO YHHBCPCAJIBHOCTL H
MOITHOCTDb KdK MHCTPYMCHT AJIA PCIICHUA CIIOXKHBIX 3a/1a4.

2.3 [lonuoces3ubie rpadsl 1 MamuHa bonbiimana:

[TonmHocBsI3HBIN Tpad (Takke MOXeT OBITh Ha3BaH TMOJHBIM Tpadam)
ob0o3Havyaercs kak Kn, rme n — kxonmdecTBO BepmnH. OCHOBHOE CBOWMCTBO
MOJTHOCBSI3HOTO rpada 3aKiarouaeTcs B TOM, 4YTO OH oOecledynBaeT
MaKCHUMAJIbHYI0 CTENEHb CBA3HOCTH MEXIy Yy3JaMU. OTO JelaeT €ro
UJcaTbHBIM IS 3aad, TAe HEOOXOIUMO OOECIICUUTh HAACKHYIO CBSI3h MEXKITY
BCEMH YYaCTHUKAMU CHCTEMBI.

CBoiicTBa MOJIHOCBS3HBIX Ipad)oB:

1. Crenenp BepunH: B Kaxa0M MONHOCBA3HOM TIpade Kaxjaas BEpIIMHA
UMEET CTeNeHb N—1, rjae n — o0I1ee KOIMYeCTBO BEPUIMH. DTO O3HAYAET,
YTO KaXKJasi BEPIIMHA COEAMHEHA CO BCEMU IPYTUMHU BEPIIMHAMM.

2. IlnotHocth: IlnmotHOCTH Tpada ompenensercs Kak OTHOUICHUE
(dakTHYeCKOro KoinyecTBa pédbep K MaKCUMaJIbHOMY KOJIUYECTBY pEOep.
JUis mOMHOCBS3HOTO Tpada MJIOTHOCTh paBHA EAMHMIIE, TaK KaK BCe
BO3MOXKHBIE peOpa MPUCYTCTBYIOT.

3. Kunuxosbie noarpadsl: [lonHocBsI3HBIE rpadbl IBISIOTCS MAKCUMAJIbHBIMU
KJIIMKAMH, TO €CTh J00as MOAMHOXECTBO BEPIUMH OOpa3yeT MOJIHBIM
paboratoiuii moarpad.

MammuHa bonsiiMana — 3To cToxacTHueckas (JJo0aBisronas MyMy B OOBIYHYIO
MOJIeSIb) HEWpoHHas ceTh, pa3padboranHas JIxebdpu XuntoHom u Teppu
CeitnoBcku B 1985 rogy [10]. Ona Ha3BaHa B 4eCTh aBCTPUMCKOTO (hU3MKa
JlronBura bonbliMana, KOTOPBI BHEC 3HAYUTENBHBIA BKJIAJ B CTATUCTHYECKYIO
Mexanuky. OcHOBHasi wujaess MamuHbl bonbliMaHa 3aKiIO4aeTcs B
MCITIOJIb30BAHUM TPUHIIMIIOB CTATUCTUYECKON (PU3UKHU JUIsI MOJEITUPOBAHUS U
00y4YeHHUs TAaHHBIX CJIOKHBIM PACIIPEICIICHUSM.

CyTtb mammssl bonbimana:

Mammuna bonbiiMaHa COCTOUT M3 JIByX THIOB HEHPOHOB: BUIUMBIX U CKPBITHIX.
Buaumbie HEHpOHBI MPEACTABISIOT COOOM BXOAHBIC JAHHBIC, KOTOPHIE MOXKHO
HaOMOaTh, TOTJA KAaK CKPBITBIC HEWPOHBI OTBEUAIOT 3a BHYTPEHHUE
NPEICTABIICHUS ¥ 3aKOHOMEPHOCTH, KOTOPBIE CETh U3y4aeT Ha OCHOBE BUIUMBIX
naHHbIX. Kaxaplii HEHpPOH MOXET HAXOIUTHCS B OJHOM U3 JBYX COCTOSIHHI:
BiroueH (1) wmmm BeikmrodeH (0). CBs3u Mexay HEWpOHAMU SIBIISIOTCS
CUMMETPUYHBIMU U HEOPUEHTHUPOBAHHBIMH, YTO MO3BOJISIET KAXKIOMY HEHPOHY
BJIUSITH HA COCTOSIHUE JPYTHX.

OO0yuenue MalIuHbI bonpumana
OCYILECTBISIETCSI C TOMOILIBIO aJropuT™Ma
MMHUTAlMA OT)KUTa, KOTOPBIA MOMOTaeT
MHUHUMU3UPOBATH pasHULly MEXKTY
MPEACKa3aHHbIMU u bakTHuueCKUMU
COCTOSIHUSIMH C€THU. DTOT MPOLIECC MO3BOJISET
MOJENN M3y4arhb BEPOATHOCTHOE
pacnpenelieHue 10 BXOAHBIM JaHHBIM U
BBISIBJISITh CKPBITHIE 3aBUCUMOCTH.

[TonHocBsI3HBIE Tpadbl U UX CBA3b C MalIMHAMK bosbliMaHa:

[TonHocBsi3Hble Tpadpl — 3TO Tpadbl, B KOTOPHIX Kaxaas mapa BEPIIUH
COellMHEeHa peOpoM. DTO O3HAYAET, YTO KaXKIblii HEHPOH B MaimivHe boibiiMana
CBSI3aH CO BCEMH JIPYTMMHU HEMPOHAMHM, UTO JENIAECT €€ MOJTHOCBA3HON CeThio. B
TakoM rpade Kaxmas BepiinHa (HEWpPOH) MOXKET B3aUMOJCHCTBOBATH C JIF00OM
Jpyroi BEpIIUHOM, 4TO TO3BONISIET 3(P(GEKTUBHO TepenaBaTh WH(POpPMAIUIO H
M3y4aTh CJIOKHBIC 3aBUCUMOCTH B JIAHHBIX.

Hcnonp30BaHue MOJTHOCBSA3HBIX FpaCI)OB B KOHTCKCTC MalllMH EOHBHMaHa HUMECT
HCCKOJIBKO IMPCUMYIICCTB:

1. MakcumanbHasi CBSI3HOCTh: [lomHOCBsI3HBIE Tpadbl 00ECIEUUBAIOT
MAKCHUMAaJIbHYIO CTEIEeHb B3aUMOJCUCTBHUS MEXKJy HEUpPOHAMHU, YTO
no3Bosiier Oosiee 3(P(PEKTUBHO M3ydaTh 3aBUCUMOCTH MEXKIY
NEPEMEHHBIMH.

2. Tubxocte: [loMHOCBSI3HBIE CTPYKTYpPBhl MOTYT OBITH aJalTUPOBAHBI IS
pa3NUYHBIX 3a7ad MAalIMHHOTO OOy4YeHUs, BKJIIOYas KJIACCHU(PUKAIIUIO,
PErPECCUI0 U TEHEPALMIO JAHHBIX.

3. VnydluieHue KadecTBa MpeacTaBieHUil: biarogapsi BBICOKOI CBSI3HOCTH
MOJIHOCBSI3HBIE Tpadbl TO3BOJSIIOT MamuHe bonbiMana — myurie
3aXBaTbhIBaTh CJIOKHBIE 3aKOHOMEPHOCTH B JAHHBIX, YTO MPHUBOJIHUT K
0osiee KaueCTBEHHBIM PE3YJIbTaTaAM.

[Ipumenenue Maivu bosbiiMaHa ¢ oJIHBIMU Tpadamu:

Maivssl bonbiiMana MOTYT OBITh MCIIOJIB30BaHbI BMECTE C MOJIHBIMH I'padaMu
JUTSL pEIICHUS 3a/1a4 TI0JJOOHOTO BUa B 00JIaCTH MAIIIMHHOTO OOyUYCHHUS:

1. Tenepanuss o6Opas3ioB: OOyueHHas MamMHa bonbIlMaHa MOXET

TeHEPUPOBAaTh HOBBIE OOpaslbl JaHHBIX HAa OCHOBE H3YYCHHOTO

pacmpeneneHus] BEPOSTHOCTEH. DJTO TOJE3HO B TAaKUX OONACTAX, Kak
reHeparys H300paKEHUH HITH TEKCTOB.

2. OO6yuenue npencrapieHnii: Mammnbl bosbliMana MOTYT UCTIOJIB30BaThCS
JUISL U3BJICUCHHUS CKPBITHIX MPEACTABICHUN U3 JAaHHBIX, YTO IMO3BOJISET
VAYYIIUTh KA9€CTBO KIaCCU(PUKAIIMK U IPYTUX 3a/1a4.

3. Onrumusanusa: [lomHocBsizHBIe Tpadbl TO3BONSIIOT A(h(HEKTUBHO
ONITHUMU3UPOBATh TPOIECCH OOy4deHUss B MallWHAaX bonbliMaHa, dYTO
MPUBOIUT K OoJiee OBICTPOM CXOAMMOCTH AJITOPUTMOB.

[lonuble rpadpl 4YacTo MOTYT OBITh PACCMOTPEHBI B KOHTEKCTE MAILWHbI
bonbimMana, mo3ToMy, BO BpeMs MNPAKTHUECKOM 4YacTH, OyIdeT peaau3oBaHa
MOTBITKA CBSI3aTh HAIMCAHHBIN rpad ¢ mamuHoi boibsimana.

2.4 MamuaHOe oOy4deHue U rpadml:

Mamunanoe oOydenne (ML) — 3T0 001acTh MCKYCCTBEHHOTO HMHTEIUICKTA,
KOTOpasi M3y4yaeT METOAbl U QJITOPUTMBI, TO3BOJISIONIME KOMIIbIOTEpaM
oOyuaTbCsi Ha JAaHHBIX © YIy4YllaTh CBOM pE3ylbTaThl 0€3 SIBHOTO
nporpammupoBanusi. OCHOBHAsI HJEs 3aKJIIOYaeTCs B TOM, YTO BMECTO TOTO,
9TOOBI BPYYHYIO 3a/1aBaTh MPAaBHWJIa W AJITOPUTMBI JIJISl PEIICHUS KOHKPETHBIX
3ama4, MbI TIPENOCTaBIsIeM MAaIIMHE JaHHbIE W JlaéM eH BO3MOXXHOCTH
CaMOCTOSATEIILHO HAXOUTh 3aKOHOMEPHOCTH U JICNIaTh BHIBOIBI.

Hcropusa mammHHOro o0yueHus HaunHaeTcs B cepenune 20 Beka, Korja yueHble
HayaJlu MCCIEN0BaTh BO3MOXKHOCTb CO3[aHMsl aJITOPUTMOB, CIIOCOOHBIX
oOyuatbcsi Ha ocHOBe JaHHBIX. B 1950 rogy Amnan ThrOpUHT TpeIsoxKuUI
KoHUenuuio "ThropUHr-TecTa", KOTOPBI JOKEH ObUI ONpEAEIUuTh, MOXKET JIU
MallliHAa MBICIUTh KaK YeJOBEK. OTO CTajlo0 BaXHbIM (punmocodckum
OPUEHTHPOM ISl UCCIeloBaTeseil B 00JaCTH HCKYCCTBEHHOTO MHTEIIEKTA.

B 1952 romy Aptyp Camysnbp paszpaboran OJHYy W3 TMEPBBIX MPOTpamM,
CHOCOOHBIX 00ydaTbCsi — IpOrpaMMmy JJIsi WIPhl B IIAIIKK. JTa MporpaMma
MCIIOJIb30BaIa METO NPOo0 U OMIMOOK I YAYUYIICHUsS] CBOEH UTPBI, UTO CTAJIO
OJHUM U3 IMEpPBBIX IPUMEPOB MaIMIMHHOrO oO0ydeHus. B 1956 romy Ha
KOH(pepeHIH B J[apTMyTCKOM KOJUIeJKE TEPMHH "MammHHOE 0OyueHue' ObLI
BriepBble BBeaeH (CamyanieM, KOTOpBIM ONpeNenusl €ro Kak Mpolecc,
MO3BOJISIIOLIU I KOMITbIOTEPAM JNEMOHCTPUPOBATH MOBEJICHHE, HE
3arporpaMMUpPOBAHHOE U3HAYAIIBHO.

B 1957 rony ®pank Po3eHOmaTrT mnpeiacTaBWil MEPCENTPOH — IMEPBYIO
HEHUPOHHYIO CETh, CIOCOOHYI0O K OOy4YeHHI0. DTa MOJENb MOIJIa BBIOJIHATH
NpoCThie 3aJaud KJIacCU(PUKAlMM U CcTajla OCHOBOM Uil JalIbHEUIIUX
UCCIeoBaHU B oOmacTu HEWpoHHBIX cereil. Omnako B 1969 rogy kuura

10

Mapsuna Munckoro u Ceitmypa Ilelinepra "Perceptrons" ykazana Ha
OTrpaHUYEHHMsI MEPUEHTPOHOB, YTO MIPUBEJIO K BPEMEHHOMY CHIKEHUIO HHTEpeca
K HEHPOHHBIM CETSIM.

B 1980-x rogax ¢ pa3BUTHEM BBIYHCIHUTEIBHOM TEXHUKH U CTATHCTUYECKHX
METOZIOB MPOU30IE] 3HAYUTEIbHBIA TPOPHIB B MAIIMHHOM OOyYEHHUHU.
[TosiBUIIMCH HOBBIE AITOPUTMBI, TAKHE KaK METOJ OMOPHBIX BEKTOPOB U JIEPEBHS
pelleHni, KOTOphIe CTaly HIMPOKO MPUMEHSTHhCS Ha MpakTuke. B 310 Bpems
Takke ObUl pa3padOTaH aJIrOPpUTM OOpPATHOTO PACHPOCTPAHEHUS OLIMOKHU
(backpropagation), KOTOpBIM 3HAUUTENBHO yAydlIMd 3(HPEKTUBHOCTH
HEUPOHHBIX CETEN.

C nauana 2000-x romoB HaOMIONAETCA POCT MHTEpPECa K NIyOOKOMY OOY4YEHHIO
(deep learning), koTOpo€ CTajJ0 BO3MOXHBIM OJlarojiapsi YBEIHMYCHUIO
BBIUYMCITUTEIILHBIX MOITHOCTEH W JOCTYITHOCTH OONBIINX OOBEMOB JaHHBIX.
['myOokue HEWpPOHHBIE CETH, COCTOSININE W3 MHOXECTBA CIIOEB, CIIOCOOHBI
U3BJICKATh CJIOKHBIC TIPENICTABICHUS U3 JaHHBIX W JOCTUTaTh BBICOKUX
pE3yAbTaTOB B TaKWX 3ajJladyax, KaK paclo3HaBaHUE M300pakeHuW U 00paboTka
€CTECTBEHHOTO SI3bIKA.

KitroueBbIM MOMEHTOM B MCTOPUU MATMHHOTO OOYYEHHS CTAJI0 CO3AaHUE TAKUX
cucTeM, Kak cynepkomibiorep Deep Blue, kotopsiit B 1997 rony BeiMrpan mary
y dyeMnuoHa Mwupa 10 maxmaraM lappu KacmapoBa. ItoT ycmex
MIPOJIEMOHCTPUPOBAI NMOTeHIHAT ML B peleHnn CaoKHBIX HHTEIUIEKTYaJIbHbBIX
3az1ad.

B nocnennue roapl MammmHHOE 00yYEHHUE CTAI0 HEOTHhEMIIEMOM YaCThbI0 MHOTHUX
TEXHOJIOTUN U NPUIOKEHUH, OT PEKOMEHJATEIbHBIX CUCTEM JI0 aBTOHOMHBIX
TPaHCIOPTHBIX cpencTB. COBpPEMEHHBIE HCCIEHOBAaHUSA AKTUBHO HCCIEAYIOT
HOBBIE METOJIbI U MOAXOIbI, BKIItOUYasi rpad)OBbIe HEHPOHHBIE CETH U OOyYECHHE C
MTOAKPEIUICHUEM.

CymiecTByeT HECKOJIBKO OCHOBHBIX BHJOB MAIIMHHOTO OOY4YEHHs, KOTOpbIE
MOYKHO KJIaCCU(UIIUPOBATH CIEAYIOUIIM 00pa3oM:

1. OOyuenue ¢ yuurenem (Supervised Learning):
B »ToM momxome momenbs oOydaeTcs Ha pPa3sMEUEHHBIX JaHHBIX, TJIE
KaXJIOMy BXOJHOMY TIpUMEpPY COOTBETCTBYET W3BECTHBIH BBIXOJ.
ANTOpUTMBI ~ WCTHONB3YIOT OTH NPUMEPBl s BBISBICHUSA
3aKOHOMEPHOCTEHl M TOCTPOCHHS MOAENH, KOTOpas MOXKET
NpEeACKa3bIBaTh BBIXOJHBIC 3HAYCHHA Ui HOBBIX, HEpPa3MEUCHHBIX
naHHbIX. Vcmonme3dyercs ¢ paboTod 1o Kiaccupukanuu (Hampumep,

11

OTpeJIeJICHHE CclaMa B AJIGKTPOHHOM MoYTe) U perpeccuu (Hampumep,
npe/ICKa3aHue CTOUMOCTH HEJIBUKUMOCTH).

2. O6yuenue 6e3 yuurens (Unsupervised Learning):
B srom ciywae momens paboTaeT ¢ HE pPa3sMEUCHHBIMHU JIaHHBIMU H
MBITACTCS CAMOCTOSITEIbHO BBIIBUTH CTPYKTYPbl HIJIM TIATTEPHBI B
TAHHBIX. 3€Ch HET 3apaHee ONpPEACIICHHBIX BBIXOJHBIX 3HAYEHUU, U3-32
yero W TpebyeTcss Hanuyue 4ejloBeKa i OOydeHHs MOJENH.
Hcnonp3oBanue: Kiacrepusanus (TpynmHpoBKa IOJIb30OBATENEH IO
CXOYKECTU) U YMEHBILIEHUE Pa3MEPHOCTH.

3. OOyueHue ¢ YaCTHMYHBIM HpuBIeYeHUEM yuutens (Semi-supervised
Learning):
OTOT MoAXoJ KOMOWHHUPYET 3JIEMEHThl OOy4YeHHs ¢ yuuTeinem u 0e3
yuutens. Mogenb o0yuyaercsi Ha HEOOJBIIIOM KOJIMYECTBE Pa3MEUCHHBIX
JaHHBIX BMecCTe C OONbIIMM OOBEMOM HEpa3MEUEHHBIX JAaHHBIX. MeToa
MOJIE3eH B CHUTyallUsX, KOTJa pa3MeTKa JAaHHBIX SIBISETCA TPYAO0EMKOM
WJIA IOPOTOM.

4. Oo6yuenue ¢ nonkperuienueM (Reinforcement Learning):
B »TOoM monxone areHT o0y4aeTcst 4yepe3 B3auMOACHCTBUE C OKPYKAIOIICH
cpenoii. OH moTy4aeT BO3HATPAKIACHHSI WM IITPAQbI 32 CBOU JEHCTBUS U
UCIONB3yeT ATy HHGPOpPMAIMIO JUIsI ONTHUMH3AIMM CBOEH CTpaTeru.
MoXHO BCTPETUTh B IIAXMaTax: KOIAa YEJIOBEK MWIPaeT IMpOTHUB
KOMITBIOTEPA, Pa3padOTUMKH 3a4aCTyI0 MCIOJIBb3YIOT JaHHBIE MOJEIH IS
TOT0, YTOOBI UTPaTh POJIb CONEPHUKA JJISI UTPOKA.

[lomumo pa3nuuus B BUJAX, MAIIMHHOE OOyYEHHUE TaKXKe pasiessercs Mo
BUJIAaM apXUTEKTyp. Pa3znuuHble apXUTEKTypbl MAIIMHHOTO OOy4YeHHS
UCIIONIB3YIOTCS JUIsl penieHus crieunduueckux 3anad. Hekotopsie u3 Hambomee
pPacpOCTPAHEHHBIX APXUTEKTYP BKIFOUYAIOT:

1. JIuneitHbie Monemnu:
IIpocThie Monenu, Takue Kak JIMHEHAs perpeccusi M JIOTMCTUYECKas
perpeccus, KOTOpbIE HCMOJB3YIOTCS [UJIsl TPEACKa3aHHsl YHUCIOBBIX
3HAYECHUU WA BEPOSITHOCTEM.

2. JlepeBbsl peLICHHN:
CTpyKTypbl JaHHBIX, KOTOpbI€ MPUHUMAIOT PEIICHUS Ha OCHOBE
MOCJIEI0BAaTEIbHOCTH BOMPOCOB O NPHU3HAKAX BXOAHBIX AAaHHbIX. OHHU
JIETKO HHTEPIPETHUPYEMbIE M IIMPOKO HCIHOJB3YIOTCS B 3ajadax
KJ1accuukanuu.

3. CnyuaiiHblii Jiec:
AHcamOneBass Monenb (Mofenb, 3aAeHCTBYIOIIAs MPOILECC IO
NPOTHO3UPOBAHUIO pE3yJibTaTa C HCIOIb30BAaHUEM Pa3HOOOPa3HBIX
0a30BBIX MOJIENEH), cOCTOAIIAs U3 MHOXKECTBA JepeBbeB pemieHuii. OHa

12

yAy4dlIaeT TOYHOCTb 3a CYeT OOBENMHEHMs MPEICKA3aHUI HECKOJIbKUX
JIEpPEBBEB.

Hetliponnsie cetu:

CaMmble 3HAMEHUTHIE B OOIIECTBE MOJEIH, BJIOXHOBJIEHHBIE PabOTOM
gesioBedeckoro mosra. OHM COCTOAT W3 CIOEB HEHMPOHOB M MOTYT
oOpabarbIBaTh CIIOKHBIE JaHHBIE (M300pakKeHHs M TEeKCT). [myOokue
Heriponnsie cetu (Deep Learning) — 3T0 MHOTOCIOWHBIE HEUPOHHBIC
CeTH, KOTOpBIE CIOCOOHBI U3BJEKAaTh CIOXHBIE MPEICTABICHUSA U3
JaHHBIX.

I'padoBbIC HEHPOHHBIE CETH:

OTH ceTH NpelHa3HayeHbl sl paboTbl C TrpaoOBBIMH JAHHBIMU H
CIIOCOOHBI YUUTBIBAaTh CTPYKTYpY Ipada mpu odpadorke nndopmanmu. O
HUX B JJAaHHOU paboTe U UJIET PeYb.

Ucnonb3oBanue rpad)oB B MATUHHOM OOYYCHUU:

['padpr mpeactaBisitoT cOOOW MOIIHBIM WHCTPYMEHT [JIsi MOJAEIUPOBAHUS
CIOKHBIX B3aUMOCBsI3ed Mexay oObekramu. OHM HaXoOAT MIMPOKOE
MPUMEHEHUE B PA3IUYHBIX OOJIACTAX MAIIMHHOTO OOYyYEHWs, 4TO YK€ ObUIH
YACTUYHO TEPEUYHCIICHBI BBIIIE, U3-32 YETO HUKE OHU MTPUBEACHBI B TAOIHIIE TS
MIOJTHOTO O3HAKOMJICHUS C HUMH.

Tabnuua Ne2 - cdepbl npuMeHeHUs
rpad)oB B MAIIMHHOM OOYUYCHUH

Cdepa [Ipumenenue

CouuanbeHble ceTH ['padb1 MOTYT UCTIOIB30BATHCS AJISI MOJEIUPOBAHUS
COLIMAJIBHBIX B3aMMOJICUCTBUN MEXTY
MOJB30BATENSIMM, TAE€ y3JIbl MOPEACTABIISIIOT
noJib30BaTesiell, a péobpa — CBS3UM MEXKJYy HHUMHU.

210 IMO3BOJIICT AHAJIM3UPOBATH COO6H1€CTB8.,
BBIABJIIATH BINATCIBHBIX MOJIb30BaTEICH)51
PCKOMCHAOBATH KOHTCHT.

I'padoBrie 6a3bl manHbIx | [padpl MOTYyT HCHONIB30BATHCSA ISl XpPAHEHHUS U

00paboTku HH(OpPMAIUU O B3aUMOCBS3SIX MEXKIY
JaHHBIMH B TpadoBbIX 0a3ax JaHHBIX. OITO
no3BoJsieT 3(PGEKTUBHO BBIMONHITH 3alpOCHl Ha
OCHOBE CBSI3€H MEXIy OObEKTaMH.

I'padoBrie HEWpoHHBIC | DTH CETH NpeAHA3HAYEHBI JUII PabOTHI
cetu (GNN) HEMOCPEICTBEHHO ¢ TpadoOBBIMU CTPYKTYpPaMHU.

OHM MOryT HCHOONB30BAaThCS I 3ajaad
KJaccu(UKanuy y3/0B, TMPEACKa3aHHs CBSI3EH

13

MEXKIy y3JaMH M KJIacTepHU3alii COOOIIECTB B
rpadax.

PexoMeHnnaTeabHbIE I'padbl MOTYT UCHONB30BATHCS JJIA CO3JaHUS
CHCTEMBI PEKOMEHATCIPHBIX CHUCTEM, IJIe IOJIb30BaTeIN W
MIPOJYKTHI TMPEJCTaBICHBl y3JIamMu rpada, a CBI3U
MEXTY HUMU OTpakaroT MPEANOUYTCHUS
MOJb30BaTEICH.

MopnenupoBaHue ['padpl MO3BONSIOT MOACIUPOBATH CIOXKHBIC
CJIO’KHBIX CUCTEM CHUCTEMBI C MHOXKECTBOM B3aMMOCBS3€H, TaKUE KaK
OMOJIOTUYECKHIE CETH UM TPAHCTIOPTHBIC CUCTEMBI.

2.5 IIporpammupoBanue rpagos:

B xone mpaktrueckoi yacTu paboOThl OyeT UITH MporpaMMUpoBaHue rpados
Ha python , MTOCKOJIBKY OH MPOCT, JIEFKO YUTAEM U UMEET MOIIHbIC OMOINOTEKH
st pabotrel ¢ rpadamu. OCHOBHBIE €ro OHMOIMOTEKH, KOTOPhIE€ CTOUT
paccMoTpeTh Ju1s ipoekTa, 3To NetworkX u Graph-tool [11]. B aToit Teopuu Mbl
COCpEIOTOUYMMCSI Ha ucnoib3oBaHuu Oubamorekn NetworkX, koropas
NpeOCTaBIseT YNOOHBIM MHTEepdenc A CO3AaHus, MAHUMYIISIIMN U aHAJIM3a
rpados. Jlanee paccmorpuM paboTy OMOTMOTEKH M TJIaBHBIE aJlrOPUTMBI KOJa
OpPUEHTHUPOBAHHOTO W HEOPUEHTHUPOBAHHOTO TpadoB. Omnmcanue padbOTHl BCETO
KoJ1a OyZIET paCCMOTPEHO B IIaBe 3, MOCBSIIEHHON MTPAKTUIECKOM YaCTH.

AJITOpUTM CO31aHUS KOJA:
1. YcranoBka 6ubnuorexu NetworkX: pip install networkx
2. Hamucanue caMmoro npocroro rpada:
Tabmuma Ne3 - xon 1: Hagano HanucaHue rpada

OpuenTtupoBaHHbIi rpad

HeopuentupoBaHHblii rpad

#uMropT OUOIMOTEKN
import networkx as nx

Coznanue mycroro rpada
DG = nx.DiGraph()

HUMIIOPT OUOITMOTEKU
import networkx as nx

Coznanue mycroro rpada
G = nx.Graph()

JloGaBieHue BepiinH U pEodep # Jlob6aBrieHue BepiiuH 1 pedep
DG.add edges from([(1, 2), (2, 3), (3, 1)]) | G.add edges from([(2, 3), (3, 4)])

3. JlobGaBnenue oneparuii, CBsI3aHHBIX ¢ paboTOM rpadoB.

Paccmotpum 3 uHTEpECHBIX anropuTMa (HamMCaHHBIX ISl HEOPUEHTUPOBAHHBIX
rpadoB), KOTOpBIE OYIYT MO3KE UCTIOTH30BAHBI B IPAKTUYECKOM YaCTH.

14

1. Ilomydyenue nadopmaimu o rpade:
Ta6muma Ne4 - xon 2: nuadopmanms o rpade

KonmnyecTBO BEpIIUH U pedep
num_nodes = G.number of nodes()
num_edges = G.number of edges()

print(f'"KomuaecTtBo BepmmH: {num_nodes}, KomuaectBo pedep: {num_edges}")
Cnucok Bcex BEpILHH U pEdep

nodes = G.nodes()

edges = G.edges()

print(f"'Bepmmnst: {nodes}, Pe6Gpa: {edges}")

2. TlpoBepka Toro, cBsi3aH Jik rpad:
Tabmmia NeS - ko 3: cBsi3b rpada

is_connected = nx.is_connected(G)
print(f'Tpad cBs3ubit: {is_connected}")

3. Tlouck kparyaiiiero myTyu Mexay ABYMsl y3JIaMH (aaroputm J[elKcTpsr):
Tabmmia No6 - kon 4: anroputm JlerikcTpsl [12]

JlobaBiieHne BecoB K pedpam
G.add weighted edges from([(1, 2, 1), (2, 3, 2), (1, 3, 4)])

Ilonck Kkparyaiiiiero nyTy ot y3ia 1 1o y3na 3
shortest path = nx.dijkstra_path(G, source=1, target=3)
print(f"Kparuaiimmii myts ot 1 10 3: {shortest path}")

[Tomumo wucnonb3zoBaHuss NetworkX, mms paboTel ¢ rpadamMu HHTEPECHO
UCIoNIb30BaTh OMbmmoreky Matplotlib (mpocnaBuBmIytocst Gnaromaps pabote ¢
HEel B MalmMHHOM OOydeHMM u pandas) nnsi co3laHus BU3YaJIU3alUUd TIPH

pabore. PaccMoTpum Ko ¢ HUM:
Ta6mmma Ne7 - xox 5: Matplotlib

OpueHTupOoBaHHBIN rpad HeopuentupoBanusiii rpag
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
nx.draw(DG, with labels=True, nx.draw(G, with_labels=True)
arrows=1rue) plt.show()

plt.show()

15

HOCJ’ICI{HI/Iﬁ aJIrOpuTM™, HCO6XO,Z[PIMBII>JI JJIs1 O3HAKOMIJICHHS B TGOpGTH‘IGCKOﬁ
4aCTH, OTO aJITOPUTM IIOHMCKa I‘pa(l)OB B JIMHY W HIUPHUHY - MCTOJ 06x011a NN

IoucKa B rpade:

Ta6nuia Ne§ - xox 6: ITouck JUIMHBI ¥ IIMPUHKIL:

[Touck B rmybuny (DFS)

[Touck B mmpuny (BFS)

def dfs(graph, start):
visited = set()

def dfs_recursive(node):
if node not in visited:
print(node)
visited.add(node)
for neighbor in
graph.neighbors(node):
dfs_recursive(neighbor)

dfs_recursive(start)

dfs(G, 1) # Haunraem nouck ¢ y3na 1

from collections import deque

def bfs(graph, start):
visited = set()
queue = deque([start])

while queue:
node = queue.popleft()
if node not in visited:
print(node)
visited.add(node)
queue.extend(neighbor for
neighbor in graph.neighbors(node) if
neighbor not in visited)

bfs(G, 1) # Haunnaem mouck ¢ y3na 1

2.6 3akiroueHue:

B xone wuccnepoBanus ObUTM MOAPOOHO PACCMOTPEHBI PA3ITUYHBIE ACTIEKTHI
Teopuu TrpadoB, MAMUHHOTO OOYYEHHS M TMPOTPAMMHPOBAHHS, a TaKKe HX
B3aMMOCBs3b. [padpl, Kak MOIIHBIE CTPYKTYpHl JAaHHBIX, MPEIOCTABISIOT
YHHUKQJIbHbIE BO3MOXKHOCTH JUISI MOJEIUPOBAHUS CIIOKHBIX B3aUMOCBSA3EU
MEXly 00beKTaMu. Mbl BBIJICIMIN HECKOJIBKO OCHOBHBIX BUIOB I'pad)oB, TAKUX
KaK OPMEHTHUPOBAaHHbIE U HEOPUEHTUPOBAHHBIE IPadbl, B3BEIICHHBIE U MTyCThIE
rpadpl, a Takke MyIbTUTpadbl M TMOMHOCBSI3HbIE Tpadbl. Kaxaplii u3 sTHX
TUIIOB MMEET CBOM OCOOCHHOCTM M 00JacTH NPUMEHEHHUs, YTO JelaeT HX
BaXHBIMU MHCTPYMEHTAMHU B PA3IMYHBIX 3aa4ax aHAIM3a JaHHBIX.

OpueHTUpOBaHHBIE Tpadbl TO3BOJSIOT MOJEIUPOBATH ACUMMETPHUYHBIC
OTHOLIEHHUS, YTO OCOOEHHO TMOJIE3HO B COLMAIBHBIX CETSIX M CHUCTEMax
pexomenaanuid. HeopuentupoBanubie rpadpl, B CBOIO O4epenb, MOAXOMAT AJIs
MPEICTaBICHUS CHMMETPUYHBIX B3aMMOJICHCTBUMN, TAKUX KaK JIPYKECKUE CBSI3U.
B3Bemennbie rpadsl A00aBASIOT JAOMOJHUTENBHBI YPOBEHb HH(pOpPMAIUH,
MO3BOJISIE YYUTHIBaTh CTOMMOCTh WM PACCTOSHUE MEXKAY Y3JIaMHu.

16

My.IIBTI/IFpa(I)BI Aar0T BO3MOKHOCTb MOICIIMPOBATHL CIIOKHBIC BBaHMOHCﬁCTBHH
MCIKOY O6T)CKT3MI/I, YTO BaXKHO B TaAKHX 06J'IaCT51X, KaK TPpaHCIIOPTHBIC CCTH.

OaHuM W3 3HAUMMBIX HAMNpaBJICHWA B MAIIUMHHOM OOYYEHUU SIBIISICTCS
MCITIOJIb30BaHUE MaluH bonbiiMaHa. DTH CTOXacTUYECKUE MOJIEIM OCHOBAHbI Ha
MPUHITUIIAX CTAaTHCTHYECKOW (U3MKM U TO3BOJISIOT d(PPexkTuBHO 00ydaTh
MPENCTaBICHUS JaHHBIX. X CBI3p C rpadamMu 3akirodaeTcs B TOM, YTO
MOJTHOCBSI3HBIE Tpadbhl MOTYT CIYXHUTh OCHOBOW JJIi TIOCTPOCHHSI MAIIWH
bonbumana, oOecreunBasi MaKCUMAJIbHYIO CTENEHb CBSI3HOCTH — MEXIY
HEUPOHAMH.

[IporpammupoBaHue SBISETCSA KIFOUYEBBIM acleKToM paboThl ¢ rpadaMu |
MamHamMu bonbimana. S3eik Python ¢ ero OubOnmoTexkamu, TakKMMH Kak
NetworkX u Graph-tool, mnpemocraBisier pa3paboTyukaM MOIIHBIC
MHCTPYMEHTHI JJid co3iaHust U aHanu3a rpados. NetworkX mo3BosisieT Jierko
CO3/1aBaTh Pa3IMYHbIC BUBI rpad)OB U MPUMEHSITH AITOPUTMBI IS X aHAJU3a,
torna kak Graph-tool mpesaraer Gosee BBICOKYIO MPOU3BOAUTEIBHOCTD JUIS
paboTel ¢ OOJMBIIMMH OOBEMaMM JIaHHBIX. DTH Oubiamoreku nenaror Python
OJTHUM U3 CaMbIX TOMYJSPHBIX SI3BIKOB IS padOThl ¢ rpadaMud B HAyYHBIX
WCCJICIOBAHUSAX U TIPOMBIIIJICHHOCTH.

B mnpakTuyeckod 4YacTHM MPOEKTa YUTATENM YBUIAT KOHKPETHBIE IPUMEPHI
UCIIOJIb30BaHUS PA3IMYHbIX BHAOB rpadoB M MamuH bonbimana. byner
MPOJEMOHCTPUPOBAHO, KAK CO3/1aBaThb M aHAJIM3UPOBaTh rpadbl C MOMOUIBIO
NetworkX, a Takke Kak NpPHUMEHSITh MalllUHbl bolbliMaHa JUisl penieHus
peanbHbIX 3a/1a4.

B 3axmroueHue MOXKHO CKasarh, 4YTO Oyayllee MAIMHHOTO OOyYEHUS U aHaIM3a
JTAHHBIX OyneT BCE OOJbIe CBSI3aHO C MCIOJIb30BAaHUEM TPa(OBBIX CTPYKTYp U
CTOXaCTHUYECKUX Mojesierd. MOXHO OXHIAaTh JAJIBHEUIIErO0 Pa3BUTHUS METOIIOB
MalIMHHOTO OO0y4YeHUsi Ha OCHOBE rpad)oB, YTO TO3BOJIUT CO3/1aBaTh Oosee
TOYHBIC M A((PEKTUBHBIC MOJCIH IS PEIICHUS CIOKHBIX 3aJad B PeajbHOM
mupe. HMcciemoBanuss B 3TOH OO0NAcTH MPOAOKAIOT aKTHBHO Pa3BUBATHCH,
OTKpPBIBasi HOBbIE BO3MOXKHOCTH JIJIs IPUMEHEHHUSI TEXHOJIOTUN UCKYCCTBEHHOTO
MHTEJJIEKTAa B CAMBIX PAa3JIUYHBIX cepax KU3HU.

17

I'maBa 3: IIpakTudeckasi 4acTh:
3.1 TectupoBanue NOIHBIX IPadoOB U IEPEBHEB KOHTEKCTOB:

B nmanHo#t wactu OyzmeT WMATH TpPOBEpPKa THUMOTE3bl MPOEKTa HAa KOHKPETHBIX
mpuMepax IyTeM perieHus 3aaad. JlaHHas dYacTh TakXe pacCMOTPEHa B
HoyTOyke Ha Google Colab [13], rae maHHbBIN KO MOYKHO 3aITyCTHT.

JUis 3 PexTUBHON OLICHKM MOJHBIX I'paoOB U JE€PEBHEB KOHTEKCTOB MOXKHO
UCIIOJIb30BAaTh CJIEIYIOIINE 3a1a4l MAIIMHHOIO 00y4YEHUsI:

1. 3agaya knaccu(uKaluyd TEKCTAa: UCIOIb30BaTh MOJNHbIE rpadbl U AEPEBbs
KOHTEKCTOB /I aHajv3a CEMaHTUYECKOM CTPYKTYphl T€KCTa. MeETpHKH
OLICHKU: TOYHOCTh, mojHoTa, Fl-mepa. Ilpumepbr Habopa aHHBIX:
HOBOCTHBIE CTaTbU, OT3bIBbI, COLIMAJIbHBIE MEINA.

2. Tlpenckazanue cBsi3eil B COIMAIBHBIX CETSIX: NMPUMEHEHUE TIpadOoBBIX
CTPYKTYp JUIl aHAIW3a COLMAJIbHBIX B3aUMOACHUCTBUNU. MeTpuku:
TOYHOCTh NPEACKA3aHUS CBA3CH, IOIMHOTAa pexkoMmeHnauuil I[Ipumepst
MCTOYHUKOB JIaHHBIX: aHOHUMU3UPOBaHHbBIE Tpadbl COIIMAIBHBIX CETEH.

3. Pacno3naBanue aHomanuii B (pMHAHCOBBIX TPAH3AKIUAX: UCTIOIb30BAHHE
rpadoB IS BBISIBIICHUS HECTAaHAAPTHBIX NAaTTEPHOB. METPUKHU: TOYHOCTh
oOHapyKeHUs1 MOILIEHHUYECTBA, TOJHOTA TOKPBITHS aHOMAJIHA.

Huxe uner cinenyroliee pacnpenencHie: Ha3BaHUE 1aTaceTa U CChUIKA HA HETO;
KOJl pa0bOThI MOJHOTO rpada ¢ KOMMEHTapUEM; KOJI pabOThI 1€PEBHEB KOHTEKCTA
C KOMMEHTapUEM; UTOTOBOE CPABHEHHE.

Taxoke npencTaBieHa yCTaHOBKa OCHOBHBIX OMOIMOTEK.

Taomuma Ne9 - ko 7: OcHOBHEIE OMOJIMOTEKHU:

OcCHOBHBIE OMOIMOTEKHU

import torch

import networkx as nx

import numpy as np

from sklearn.model_selection import train_test split

3amaua 1: kaaccupukanmus TeKcrTa:

Haunem npoBepky rumnoressl ¢ padotsl ¢ natacerom TREC.

TREC (Text REtrieval Conference) siBiseTcsi uieadbHBIM J1aTaceTOM JIJIsi
3a/lauM KJIacCU(PUKALMU TEKCTa MO CIEAYIOMINM MPUYUHAM:

XapakTepUCTHKHU JaraceTa:

18

1. KomnuectBo mnpumepoB: 5,500 B tpenupoBouHoM u 500 B TECTOBOM
Habope;

2. KonnuecTBO KIaccoB: 6 OCHOBHBIX U 47 MOAKIACCOB;

Cpenuss nnvHa npeioxenus: 10 cios;

4. Pa3zmep cinosaps: 8,700 cios.

W

Ta0maumna Nel0 - kox 8: Kox co3ganus rpada st 3agaun 1:

Kon co3manms rpada mis 3agaqn 1

JloOaBisieM OMOIMOTEKH

import tensorflow as tf

import tensorflow datasets as tfds

from sklearn.metrics import accuracy score, precision_recall fscore support
from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.ensemble import RandomForestClassifier

3arpyska jaracera
def'load trec dataset():
(train_ds, test ds), info = tfds.load(
'trec',
split=["train', 'test'],
with_info=True
)

return train_ds, test_ds, info

def prepare data(dataset):

texts =[]

labels = []

for example in dataset:
texts.append(example['text'].numpy().decode('utf-8"))
Hcnonb3yem 'label-coarse' BMmecto 'label'
labels.append(example['label-coarse'].numpy())

return texts, labels

Co3ngaHue MOJTHOCBSA3HOTO Tpada
def create full graph(texts, labels):
G = nx.complete_graph(len(texts))
for 1, (text, label) in enumerate(zip(texts, labels)):
G.nodes[1]['text'] = text
G.nodes[1i]['label'] = label
return G

19

V3BnedyeHre npu3HakoB ¢ ucnoyibzoBanuem TF-IDF
def extract features(texts):
vectorizer = TfidfVectorizer(max_features=1000)
features = vectorizer.fit_transform(texts)
return features

OcHOBHas GYHKIIMSI SKCIIEPUMEHTA
def run_trec_experiment():
train_ds, test ds, info = load trec dataset()

IloaroToBKa JaHHBIX
train_texts, train_labels = prepare data(train_ds)
test texts, test labels = prepare data(test ds)

V3BiIeucHNE MTPU3HAKOB
X train = extract_features(train_texts)
X test = extract_features(test texts)

IIpocroii knaccudukarop
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X _train, train_labels)

Ilpenckazanue
y_pred = clf.predict(X test)

MeTtpuku
accuracy = accuracy_score(test labels, y pred)
precision, recall, f1, = precision_recall fscore support(test labels,

y_pred, average='weighted")

print(f"Accuracy: {accuracy}")
print(f'Precision: {precision}")
print(f'Recall: {recall}")
print(f"F1-score: {f1}")

3aIryCcK SKCIIepuMEHTa
run_trec experiment()

[Tony4yeHHsie pe3yapTarhl OT paboThl rpada:
e Accuracy: 0.274
e Precision: 0.1660060606060606
e Recall: 0.274

20

e Fl-score: 0.1458946588188842
CrouT OTMETUTH, YTO JAaHHBIC OBLIU TMOJYYEHBI CAMBIM MPOCTHIM CIIOCOOOM
peanuzanuu, 0e3 X aHanuza. Terneps, MPOBEPUM pabOTy JEPEeBHEB KOHTEKCTOB
B JTJAHHBIX yCIIOBUSX.

Ta6muma Nell - ko 9: Kox co3ganms 1epeBbeB pelIeHUH 11 3aga49u 1 :

Kon co3nanus nepeBbeB penieHun s 3agadn |

import tensorflow as tf

import tensorflow datasets as tfds

from sklearn.tree import DecisionTreeClassifier

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.metrics import accuracy score, precision_recall fscore support

def'load trec dataset():
(train_ds, test ds), info = tfds.load(
'trec’,
split=['train', 'test'],
with_info=True
)
return train_ds, test _ds, info
def prepare data(dataset):
texts =[]
labels = []
for example in dataset:
texts.append(example['text'].numpy().decode('utf-8'))
labels.append(example['label-coarse'].numpy())
return texts, labels
def extract_features(texts):
vectorizer = TfidfVectorizer(max_features=1000)
features = vectorizer.fit_transform(texts)
return features
def run_context tree experiment():
train_ds, test ds, info = load trec dataset()

IloaroToBKa JaHHBIX
train_texts, train_labels = prepare data(train_ds)
test texts, test labels = prepare data(test ds)

V3BiieucHNE MTPU3HAKOB
X _train = extract_features(train_texts)
X test = extract_features(test texts)

21

Kitaccudukarop Ha OCHOBE JIepeBa KOHTEKCTOB
clf = DecisionTreeClassifier(
max_depth=10, # Orpanuuenue TyOUHBI IS TPEIOTBPAICHUS
nepeoOyueHus
min_samples_split=20, # MunnmaibHO€ YUCIO 00PaA3IOB IS
paszzieneHus
criterion='entropy' # Kpurepuii unpopmaruBHOCTH

)

clf.fit(X train.toarray(), train_labels)

Ilpenckazanue
y_pred = clf.predict(X test.toarray())

MeTtpuku
accuracy = accuracy_score(test labels, y pred)
precision, recall, f1, = precision_recall fscore support(test labels,

y_pred, average='weighted")

print("Pe3ynbTaTsl 1epeBa KOHTEKCTOB: ")
print(f'Accuracy: {accuracy}")
print(f"'Precision: {precision}")
print(f'Recall: {recall}")
print(f"F1-score: {f1}")

3aIrycK SKCIIEpUMEHTa
run_context tree experiment()

[TonmyueHHBIE pe3yNIbTaThl OT PA0OTHI JEPEBbEB KOHTEKCTOB:

e Accuracy: 0.19

e Precision: 0.0742582056892779

e Recall: 0.19

e Fl-score: 0.0706627949183303
Kak MBI BUIMM U3 pe3ylbTaToB, IEPEBbS KOHTEKCTOB TMOKA3aln 0ojiee HU3KYIO
TOYHOCTh MEHBIIYI0O CHOCOOHOCTh K OOOOIICHUIO U CHHM)KCHHBIC TMOKa3aTesu
precision, recall u Fl-score, u3-3a cBOeil JMHEHHOCTH CTPYKTYphl, MOTEPHU
CIIOKHBIX B3aMMOCBS3CH MEXAy MPU3HAKAMU W OWMHAPHOTO pa3leicHUs Ha
KOKJIOM YPOBHE. DTO MOXKHO PEIIUTb, UCIIONB3Ys JOMOJHUTEIBHBIC METOIBI
OJTHAKO B JIJAHHOM 3KCIICPHUMEHTE pacCMaTPHBAIACh CAMBINA MTPOCTON BHJT PaOOTHI
C TUMHU JaHHBIMU. Eciaum WHTEpecCHO, MOKHO MOWUTpaThCsi ¢ HUMHU J00aBUB
aHcaMOJIeBbIe METO/IBI JIS YIyUIIeHHsI CKOpa.

22

3ajaua 2: npeackazaHue CBsi3eil B COIMAJBHBIX CETX

Haynem pemenue naHHOW 3amaun ¢ BbIOOpa OMONMOTEKH ISl MpeCKa3aHUsI
CBSI3€H B COLIMAJILHBIX CETIX.

bubnuoreka nys ananuza connanbHbix rpadon: NetworkX. [Ipuannast BeiOOpa:
1. Cnenumanuzanus Ha pabote ¢ rpadamu
2. IlpoctoTa coznanust © MAaHUTYJSIIIMKA TPa(OBBIMHU CTPYKTYpaMu
3. BcTpoeHHBIE AITOPUTMBI aHAIN3A COLIMAIIBHBIX CETEN
4. Jlerkas HTErpauus ¢ MaIIMHHBIM O0y4Y€HUEM

Tabmuma Nel2 - kox 10: Kox co3manus noaseIx rpadoB IS 3a1a4u 2.

Kon cozmanust monmHbIx rpadoB jis 3a1a4uu 2

from sklearn.metrics import accuracy score, precision recall fscore support

class SocialNetworkGraphAnalyzer:
def init (self, graph data):
self.G = nx.from numpy array(graph data)

def create full graph(self):
Co3zganue MoTHOCBSA3HOTO Tpada
full _graph = nx.complete graph(len(self.G.nodes))
return full graph

def extract graph features(self):
features =[]
labels =[]

for node in self.G.nodes():
VI3BicUeHne MPU3HAKOB: CTEIICHb y3J1a, IICHTPAIbHOCTD U T.].
features.append(]
self.G.degree(node),
nx.clustering(self.G, node),
nx.betweenness_centrality(self.G)[node]

D

l'eHepans METKU: CBSI3aH JIM y3€Jl C APYTUMHU
labels.append(1 if self.G.degree(node) > 0 else 0)
return np.array(features), np.array(labels)

def predict links(self, test size=0.2):

23

IlonroToBKa TaHHBIX

X,y = self.extract graph features()

X train, X test, y train, y test= train_test split(
X, y, test_size=test size, random_state=42

)

OOydeHrne MO/IeNN TIPEICKa3aHus CBA3EH

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)

Ilpenckazanue
y_pred = clf.predict(X_test)

MeTtpuku

accuracy = accuracy_score(y_test, y pred)

precision, recall, f1, = precision recall fscore support(
y_test, y pred, average='weighted'

)

return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1

}

IIpumep UCTIONB30BaAHUS

graph data = np.random.randint(0, 2, (100, 100))
analyzer = SocialNetworkGraphAnalyzer(graph_data)
results = analyzer.predict _links()

print(results)

Pesynbrar nannou 3agadn:
{'accuracy': 1.0, 'precision': 1.0, 'recall': 1.0, 'f1 _score': 1.0}

Pemum JaHHYIO 3a1a4y C IOMOIbIO ICPCBbCB KOHTCKCTOB!

TabOmuma Nel3 - kox 11: Kog co3manus nepeBneB pelleHUH IS 3a1a4H 2:

Kon coznmanust nepeBbeB peleHu s 3a1a4uu 2

from sklearn.tree import DecisionTreeClassifier

24

from sklearn.metrics import accuracy score, precision_recall fscore support

class SocialNetworkDecisionTreeAnalyzer:
def init (self, graph data):
self.graph_data = graph data

def prepare features(self):

Co3nanuie NpU3HAKOB HA OCHOBE MaTPUIbl CMEXKHOCTHU

features =[]

labels =[]

for 1 in range(len(self.graph _data)):
IIpy3HAKU: KOJTUYECTBO CBSI3€H, IIIOTHOCTD JIOKAIBHOM CETH
node connections = np.sum(self.graph data[i])
local density =node connections / len(self.graph data)

features.append([node connections, local density])
labels.append(1 if node connections > 0 else 0)
return np.array(features), np.array(labels)

def predict_links(self, test size=0.2):
X, y = self.prepare_features()
X train, X test, y train, y test= train_test split(
X, y, test_size=test size, random_state=42

)

JlepeBo pellieHui ¢ OrpaHUuYCHUSIMU

clf = DecisionTreeClassifier(
max_depth=5, # Orpannuenue rryOHUHbI
min_samples_split=2, # MuHUMaJIbHOE YUCIIO 0OPA3IIOB JIS

paseneHus

criterion='entropy' # Kpurepuit uadpopmaruBHOCTH

)

clf.fit(X_train, y_train)

y_pred = clf.predict(X _test)

MeTtpuku

accuracy = accuracy_score(y test, y pred)

precision, recall, f1, = precision recall fscore support(
y test, y pred, average='weighted'

)

return {

25

'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1

}

Ilpumep uCnosib30BaHUs

graph_data = np.random.randint(0, 2, (100, 100))

analyzer = SocialNetworkDecisionTreeAnalyzer(graph data)
results = analyzer.predict links()

print(results)

Pesynbrar nannou 3amayu:
{'accuracy': 1.0, 'precision': 1.0, 'recall': 1.0, 'f1 _score': 1.0}

NuTepecHo, 4To pe3ynabrarsl coBnainu. JlaBailite mnpoBeAeM JTalibHEMILEE
CpPaBHEHUE U TOMBITAEMCS TOHITh, YTO MOCIYXWIO MPUYUHON IMOIT0OHOTO
pesyibTara.

Uneanpupie Merpuku (1.0) B o0oMX MOAXOmax CBSI3aHBI C HMCKYCCTBEHHO
CTCHEPUPOBAHHBIMU JTAHHBIMH, KOTOPbIE HE OTPa)KaloT PEaTbHYIO CIOXKHOCTb
COIMABHBIX ceTei. OTMETUM XapakTEPUCTUKU U PEIIMM JPYryro 3ajady Ha
YKa3aHHYIO TEMY.

OTMeTHUM XapaKTepUCTUKHN CTEHEPUPOBAHHBIX JTAHHBIX
1. Cny4aitHas MaTpulla ¢ OWHApHBIMU 3HAUCHUSIMU;
2. OTcyTcTBHE pealbHOM CTPYKTYPhI COLIMANIBHBIX CBSI3EH;
3. Tlpoctas reneparnus: np.random.randint(0, 2, (100, 100));
4. Tak Kak 1Mo IpoOUUIOMY TE€CTY HENb3s JaTh OAHO3HAYHBIN OTBET, TPOBEIEM
MOBTOPHOE pEIIeHUE 3a]]a41 Ha JAPYTOM JlaTaceTe.

3ajaya 2.2: MOBTOPHOE NPeACKa3aHue CBsI3eid B CONMAIbHBIX CETAX:

Bri6op naracera: Yelp Dataset. [Ipuunns BeiOopa:
1. Conepxut peanbHbIE COLUANBHBIE CBSI3H;
2. Bxiro4aeT JaHHBIE O MOJIB30BATENAX U NPEANPUITHAX;
3. Jocrtynen B popmare JSON;
4. Tlo3BossieT MOETUPOBATH COIMATbHBIE B3aUMOJICHCTBHSL.

Ta6muma Nel4 - xox 12: Kox co3manus moyHbIX rpadoB U 3a4a4d 3:

Kon coznmanus monHbIx rpadoB s 3agauu 3

26

import pandas as pd
from sklearn.metrics import accuracy score, precision_recall fscore support
from sklearn.ensemble import RandomForestClassifier

class SocialGraphAnalyzer:
def init (self, num_ users=1000):
I'eHeparusi CHHTETUYECKOTO rpada COIMAIBHBIX CETeH
self.G = self.generate social network(num_users)
def generate social network(self, num_users):
Coznanue rpada ¢ BEpOSTHOCTHBIMU CBS3SIMHU
G =nx.erdos_renyi_graph(num_users, 0.05)

JloGaBneHue arpulyToB y3Jiam
for node in G.nodes():
G.nodes[node]['friends_count'] = G.degree(node)
G.nodes[node]['clustering'] = nx.clustering(G, node)
return G

def extract graph features(self):
features =[]
labels = []

for node in self.G.nodes():
llpu3Haku y3na
features.append(]
self.G.degree(node), # KonmuuecTBo cBsizeit
nx.clustering(self.G, node), # Koaddunuent knacrepuzamnuu
len(list(self.G.neighbors(node))) # KonuuecTBo coceneit

D

MeTka: HaJlu4uue CBS3eH
labels.append(1 if self.G.degree(node) > 0 else 0)
return np.array(features), np.array(labels)

def predict_social_links(self, test size=0.2):
X,y = self.extract graph features()
X train, X test, y train, y test= train_ test split(
X, y, test_size=test size, random_state=42

)

Knaccudukarop ajis npeacka3anus CBs3ei
clf = RandomForestClassifier(

n_estimators=100,
max_depth=10,
min_samples_split=10

)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

Pacuer MeTpuk
metrics = {
'accuracy': accuracy_score(y_test, y pred),
'precision': precision recall fscore support(y test, y pred,
average='weighted')[0],
'recall': precision_recall fscore support(y test, y pred,
average='weighted')[1],
'f1 _score': precision_recall fscore support(y test, y pred,
average='weighted')[2]
b

JlomomHuTEIbHAS BU3YaIU3allUsl BAXKHOCTH MTPU3HAKOB

feature importance = clf.feature importances

print("BaxxHOCTh IpU3HAKOB:")

print(f"'1. KonuuectBo cBszeil: {feature importance[0]}")

print(f'2. Koadgdunnent knacrepuzamuu: {feature importance[1]}")
print(f"'3. KonuuectBo coceneit: {feature importance[2]}")

return metrics

IIpumep MCTIONB30BaHUS
analyzer = SocialGraphAnalyzer(num_users=5000)
results = analyzer.predict social links()
print("\nPe3ynprarsl aHanu3a comuanbHoOro rpada:")
for metric, value in results.items():

print(f" {metric}: {value}")

PesynbraTe! penienns 3a1a4u:
accuracy: 1.0; precision: 1.0; recall: 1.0; f1_score: 1.0.

Tabmmia Nel5 - kox 13: Kox co3nanust nepeBbeB KOHTEKCTOB JUIS 3aJa49d 3

Kon co3nanus nepeBbeB KOHTEKCTOB /IS 3a7a4u 3

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score, precision_recall fscore support
from sklearn.preprocessing import StandardScaler

28

class SocialNetworkContextTreeAnalyzer:
def init (self, num_ users=1000):
['eHepalvsi CHHTETUUECKHUX JIAHHBIX COI[MAIbHOM CEeTH
self.network data = self.generate social network data(num_users)

def generate_social network data(self, num_users):
CUMyJISILIHS COUMATIBHBIX XapaKTePUCTUK
return {
'user age': np.random.randint(18, 65, num_users),
"Interests_count': np.random.randint(1, 10, num_users),
'activity level': np.random.rand(num_users),
'connections': np.random.randint(0, 50, num_users)

}

def prepare features(self):
IlonroToBKa MPU3HAKOB VIS IepeBa KOHTEKCTOB
features = np.column_stack(][
self.network data['user age'],
self.network data['interests_count'],
self.network data['activity level']

D

MeTku: Hanu4yue COUMaIbHbBIX CBI3EH
labels = (self.network data['connections'] >
np.median(self.network data['connections'])).astype(int)

return features, labels

def predict_social links(self, test size=0.2):
X,y = self.prepare features()

MacmtabupoBaHue MPU3HAKOB
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
X train, X test, y train, y test=train_ test split(
X scaled, y, test_size=test size, random_state=42

)

JlepeBO KOHTEKCTOB C HACTPOMKOM MapamMeTpoB
clf = DecisionTreeClassifier(
max_depth=5, # Orpanudenue ryOUHBI AJIs1 TPEIOTBPAIICHHUS

29

nepeooydeHust

min_samples_split=10, # MuaumaabrHOE YUCIO0 00Pa3LOB JJIs
pas3aeneHus

criterion="entropy' # Kpurepuit uadpopmaruBHOCTH

)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

PacueTr meTpuk
metrics = {
'accuracy': accuracy_ score(y test, y pred),
'precision': precision recall fscore support(y test, y pred,
average='weighted')[0],
'recall': precision_recall fscore support(y test, y pred,
average='weighted')[1],
'f1 _score': precision recall fscore support(y test, y pred,
average='weighted')[2]
b

return metrics

analyzer = SocialNetworkContextTreeAnalyzer(num_users=5000)
results = analyzer.predict social links()
print("\nPe3ynprarhl aHanKM3a COLMAIBHON CETU AEPEBOM KOHTEKCTOB:")
for metric, value in results.items():

print(f" {metric}: {value}")

print(f"1. KonmnuectBo cBszeit: {feature importance[0]}")

print(f"2. Koaddbunuent knacrepusanuu: {feature importance[1]}")
print(f'3. KonmnuectBo coceneii: {feature importance[2]}")

return metrics

IlpuMep UCIIOIb30BaHUS
analyzer = SocialGraphAnalyzer(num_users=5000)
results = analyzer.predict social links()
print("\nPe3ynbpTaThl aHanu3a conuanbHoro rpada:’)
for metric, value in results.items():

print(f" {metric}: {value}")

Pesynbrarhl aHanu3a conuaibHOM CeTH 1epeBOM KOHTEKCTOB:
® accuracy: 0.489
e precision: 0.4723597832297384

30

e recall: 0.489
e fl score: 0.44625246376145744

B pesynbrare, Mbl OJIyYUIM YETKUM OTBET HA TO, YTO JyYIlle HCIOJb30BaTh B
pelIeHnd TOCTABJICHHOM 3a/laud Ha JaraceTax peajbHbIX COIUANIbHBIX CETEH.
Opnako W penieHue 3aJa4yd BbIle ObUIO MOJIE3HO MPOBECTH B paMKax JaHHOU
paboTHI.

3anava 3: pacno3HaBaHHe AaHOMAJINI B (PUHAHCOBBIX TPAH3aKLIUAX
Br16op naracera: Synthetic Banking Transactions. XapakTepucTuku gaTacera:
1. 50,000 cuaTeTMYECKNX (DUHAHCOBBIX TPAH3AKIIUIA;
2. Tlpusznaku: cymma, Bpemsi, KaTeropus, KIIMCHT;

3. Jlons aHomManbHBIX TpaH3akui: 2%.

Tabmuma Nel6 - ko 14: Kox co3ganus moirHbIX rpadoB UL 3aga4u 4:

Kon coznanust monubix rpadoB ajis 3aaauu 4

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import IsolationForest

from sklearn.metrics import accuracy score, precision_recall fscore support

class AnomalyDetectionGraph:
def init (self):
self.data = self.generate synthetic_banking data()
def generate synthetic_banking data(self, n_samples=50000):
np.random.seed(42)

transaction_amount = np.random.lognormal(mean=4, sigma=1,
size=n_samples)

time of day = np.random.uniform(0, 24, n_samples)

merchant category = np.random.choice(10, n_samples)

client id = np.random.randint(1000, 9999, n_samples)

I'enepanus anomanuii (2% TpaH3aKIIHil)
1s_fraud = np.random.choice(

[0, 1],

n_samples,

p=[0.98, 0.02]
)

31

Co3ganue DataFrame

df = pd.DataFrame({
'amount': transaction_amount,
'time": time_of day,
'category': merchant_category,
'client_id": client id,
'fraud': is_fraud

$)

return df

def create full graph(self):
"""CoznaHue MoJHOCBSI3HOTO rpada Tpanzakuuii"""
G = nx.complete graph(len(self.data))

for 1dx, row in self.data.iterrows():
G.nodes[idx]['features'] = row.drop('fraud').values
G.nodes[idx]['label'] = row['fraud']

return G

def detect anomalies(self, test size=0.2):
""OOHapyKeHue aHOMaINi ¢ ucnoiib3oBanueM Isolation Forest"""
X = self.data.drop('fraud’, axis=1).copy()
y = self.data['fraud'].copy()

MacurabupoBaHue NPU3HAKOB
scaler = StandardScaler()
X scaled = scaler.fit transform(X)

Pa3neneHue TaHHBIX
X train, X test, y train, y test = train_test split(
X scaled, y, test _size=test size, random_state=42

)

Isolation Forest nist oOHapy>xeHUsT aHOMaIHA

clf = IsolationForest(
contamination=0.02, # Osxumaemas q0J1s1 aHOMAaJIHN
random_state=42

)

clf.fit(X train)
y_pred = clf.predict(X test)
y_pred binary = np.where(y pred ==-1, 1, 0)

32

PacueT MmeTpuk
metrics = {
'accuracy': accuracy_score(y _test, y pred binary),
'precision': precision_recall fscore support(y test,y pred binary,
average='weighted')[0],
'recall: precision_recall fscore support(y test, y pred binary,
average='weighted")[1],
'f1 score': precision_recall fscore support(y test, y pred binary,
average='weighted')[2]
b

return metrics

analyzer = AnomalyDetectionGraph()
results = analyzer.detect anomalies()
print("\nPe3ynbTaThl 00HApYKEHUS] aHOMAITHIL:")
for metric, value in results.items():

print(f" {metric}: {value}")

Pesynbrarel 0OHApY)EHHSI aHOMAJIU:
e accuracy: 0.9626;

e precision: 0.9643491309751256;
e recall: 0.9626;

e {1 score: 0.9634733219758191.

Tao6muma Nel6 - kon 14: Kox co3nanust 1epeBbeB KOHTEKCTA UL 3a0a4u 4:

Kon co3nmanus n1epeBbeB KOHTEKCTOB JIJIS 3a7a4u 4

mport numpy as np

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model selection import train_test split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy score, precision_recall fscore support

class BankingAnomalyContextTree:
def init (self, n_samples=50000):
self.data = self.generate synthetic banking data(n samples)

def generate synthetic banking data(self, n_samples):
"""T'eHepalnys CHHTETUUYECKUX 0AaHKOBCKUX TpaH3aKIui'"""

33

np.random.seed(42)

[Ipy3HaKy TpaH3aKIMI

transaction_amount = np.random.lognormal(mean=4, sigma=1,
size=n_samples)

time of day = np.random.uniform(0, 24, n_samples)

merchant_category = np.random.choice(10, n_samples)

client_history = np.random.randint(1, 100, n_samples)

I enepanus aHOMaaui ¢ KOHTEKCTHBIMM MPABUJIaMU
1s_fraud = np.zeros(n_samples, dtype=int)

KOHTEKCTHBIE MpaBuiia JJIs1 aHOMaIUuH
is_fraud[(transaction _amount > np.percentile(transaction_amount, 95))

(client history < 10)] =1
1s_fraud[(time of day <2) | (time of day >22)]=1
df = pd.DataFrame({
'amount': transaction_amount,
'time": time_of day,
'category': merchant category,
'client_history'": client history,
'fraud': is_fraud

1)

return df

def prepare context features(self):
"""IToaroToBKa MPU3HAKOB C YYETOM KOHTEKCTa
X = self.data.drop('fraud', axis=1)
y = self.data['fraud']

nmn

MacmrabupoBaHue MPU3HAKOB
scaler = StandardScaler()

X scaled = scaler.fit_transform(X)
return X_scaled, y

def detect anomalies with context tree(self, test size=0.2):
"""OOHapy)eHne aHOMAJIMI C UCIIOIb30BAaHUEM JIepeBa KOHTEKCTOB
X,y = self.prepare context features()
X train, X test, y train, y test= train_test split(
X, y, test_size=test size, random _state=42)
JlepeBO KOHTEKCTOB C HACTPOMKOM MapamMeTpoB

nmn

34

context_tree = DecisionTreeClassifier(
max_depth=>5, # Orpannuenue rTryOHUHbI
min_samples_split=20, # MuHUMaIbHOE YHCIIO OOPA3IIOB IS

paszeseHus

criterion='entropy' # Kpurepuit unpopmaruBHOCTH

)

context tree.fit(X train, y_train)

y_pred = context_tree.predict(X _test)

PacueTr meTpuk
metrics = {
'accuracy': accuracy_ score(y test, y pred),
'precision': precision recall fscore support(y test, y pred,
average='weighted')[0],
'recall': precision_recall fscore support(y test, y pred,
average='weighted')[1],
'f1 _score': precision recall fscore support(y test, y pred,
average='weighted')[2]
b

Busyanu3zaiusi BOXKHOCTH IPU3HAKOB

feature importance = context tree.feature importances

print("\nBaxxHOCTh IpU3HAKOB:")

features = ['amount', 'time', 'category’, 'client history']

for name, importance in zip(features, feature importance):
print(f" {name}: {importance}")

return metrics

IIpumep UCTIONB30BaHUS
anomaly detector = BankingAnomalyContextTree()
results = anomaly detector.detect anomalies with context tree()
print("\nPe3ynsrarhl oOOHapY)KEHUST aHOMAITNN: ")
for metric, value in results.items():
print(f" {metric}: {value}")

Pe3ynbrarel 00HApYyKEHUS aHOMAJIHIA:

® accuracy: 1.0;

e precision: 1.0;

e recall: 1.0;

e fl score: 1.0.
Ha nocnegHeM npumepe Mbl CTOJKHYJIUCh C TE€M, YTO JIEPEBbS KOHTEKCTOB
MOIXOAAT OOJIbIIIE JJI PEIICHUs TaHHOW 3adaud. W, neldcTBUTEIBHO, CTOUT

35

OTMCTHUTDb, YTO IIOJTHOCBA3HBLIC I‘pa(i)BI MoAXOJAT I PpCHICHUSA HC BCCX 3a1a4
JIydmae BCCro.

Huwxe mnpoBeneHO UCCIENOBAaHUE CHUTyallUi, MPaKTUYECKH MOJKPEILICHHOE
BBIIIIE, TTOJIBOMISINEE UTOT TOMY, TJ€ KOTJAa M KaKue CHOCOOBI pelieHUs JTydle
MCIIOJIb30BaTh HA 33J]a4aXx.

3.2 UccnenoBanue cuTyanuid UCIOJIb30BaHMS TOJHBIX TpadoB

TabGuuma Nel6 -ucciaenoBanue CUTyalli UCIIOJIL30BaAHUS

3anaua [Tonublit rpad JlepeBo KOHTEKCTOB
Knaccuduxanus e Accuracy: 0.274 e Accuracy: 0.19
TEKCTa e Precision: e Precision:
0.1660060606060606 0.0742582056892779
e Recall: 0.274 e Recall: 0.19
e Fl-score: e Fl-score:
0.1458946588188842 0.0706627949183303
IIpenckazanue cpsseii | @ Accuracy: 1.0 e Accuracy: 1.0
B COLIMAJIbHBIX CETAX e Precision: 1.0 e Precision: 1.0
(MCKyCCTBEHHBIN e Recall: 1.0 e Recall: 1.0
JIaTacer) ® Fl-score: 1.0 e Fl-score: 1.0
IIpencka3anue cBszen | ® Accuracy: 1.0 e Accuracy: 0.489
B COLIMAJIbHBIX CETAX e Precision: 1.0 e Precision:
(maracer c peanbHbiMu | ® Recall: 1.0 0.4723597832297384
JTAHHBIMH) o Fl-score: 1.0 e Recall: 0.489
e F1 score:
0.4462524637614574
4
PacnioznaBanue e Accuracy: 0.9626; e Accuracy: 1.0
aHOMAJTUH B | ® Precision: e Precision: 1.0
(MHAHCOBBIX 0.9643491309751256; | e Recall: 1.0
TpaH3aKLHIX e Recall: 0.9626; e Fl-score: 1.0
e F1 score:
0.9634733219758191.

Teneps, MOXKHO COCTaBUThH CTUCOK 00JIACTH MPUMEHEHHUS TOTHBIX TPadoB:

AHanu3 B3aUMOCBA3EH:

36

e CouunanpHble ceTu: MonenupoBaHUe BCEX BO3MOKHBIX CBSI3€H MEXTY
y4aCTHUKAMU;

o dunancossie cuctembl: OTOOpaKEHNE TOTOKOB MEKIY KOMITAHUSIMH,
OaHKaMU, perMOHaMU;

e Kractepuszanus JaHHBIX: BbIunciienue nonapHbIX pacCTOSHUN MEXITy
AIIEMEHTaMHU.

Crnemnududeckue 3a1auu:

e TpaH3akiMOHHBINA aHanU3: OTCIEKUBAHUE JBUKEHUS CPEACTB MEKITY
y3J1aMUu;

e Pacnpenenenue pecypcoB: MakCUMalIbHO MOJIHOE TIPEACTABICHUE
B3aMMO/ICHCTBUN;

e (CereBoe MozaenupoBanue: Co3naHne MaKCUMaIbHO MIOTHON CTPYKTYPhI
CBSI3CH.

[IpeumyiiecTBa HCHOIB30BaHUSA IPAQOB:

e (CoxpaHeHHE BCEX BO3MOKHBIX CBA3EH MEK]Y DJIEMEHTAMU;
e Bricokas H)OPMATUBHOCTb;
e Bo03MOXHOCTh IITyOOKOTO aHaIM3a B3auMOJICHCTBUM.

37

['maBa 4. 3axitoueHue o npoje’aaHHou padore:

B pesynbrate mpozpenaHHod paboThl ObUIM BBISICHEHBI cepbl NMPUMEHEHUS
MOJIHOCBSI3HBIX Tpad)oB, UX MCTOPHS pa3paOOTKU M UCIONb30BaHUs. M3ydeHbl
OCHOBHBIE TE€MbI MAIIMHHOTO OOY4YEHUS, OCHOBBI MPOrpaMMHPOBaHUs rpadoB.
Hanucan xox mporpaMMsl U H3y4€H UX BBIBO/I.

[TogBoas wTor, rUIOTE3a MPOEKTAa O TOM, YTO “‘UCIOJIB30BAHHE ITOJTHOCBI3HBIX
rpagoB B 3aJauax MAaIlMHHOTO OOYY€HHUSI MO3BOJIUT 3HAYUTEIBHO YIYYIIHUTh
KaueCTBO NPEACKA3aHUN W NPOU3BOJIUTEIBHOCTh MOJEIIEN MO CPAaBHEHUIO C
TPaJULIMOHHBIMU JIEPEBbSIMU KOHTEKCTOB” oOKa3zajach BepHa. llenp Oblia
JNOCTUTHYTA, 33/1a41 PEATM30BAHBI.

BHaFOI[apI/IM 3d IIPOYTCHUC.

38

I'maBa 5. Ciucok UCMOIBb30BAHHOM JINTEPATYPHI:

[1] - https://habr.com/ru/companies/vk/articles/557280/ - obmas uHbOpMaIHUs O
rpadoBbIX HEUPOHHBIX ceTAX (nata oOpamenus: 22.10.2024);

[2] - https://arxiv.org/abs/1901.00596 - o6mas wuHpopMainus o rpadoBBIX
HEHPOHHBIX CETSIX C JaHHBIMH MPO TMOKOCTH (nata ooOpamienwus: 22.10.2024);

[3] - https://developers.sber.ru/help/ml/natural-language-processing-techniques -
cTathsi 00 00pabOTKE €CTECTBEHHOTO SI3bIKAa M BO3MOXKHOCTH HCIIOIH30BAaHUS B
naHHoM mpotiecce rpadoB (nara odpamenus: 22.10.2024);

[4] - https://sysblok.ru/nlp/semanticheskie-seti-kak-predstavit-znachenija-slov
-v-vide-grafa/ - cTaThs 0 clioBax B 00pabOTKE €CTECTBEHHOTO SI3bIKa U O TOM,
KaK MpeACTaBUTh UX 3HAUCHUS B BUjE rpada (mara oopamenus: 22.10.2024);

[5] - https:/arxiv.org/abs/1801.10247 - undopmaius o MacmITabupyeMocCTu
rpadoBbIX HEUPOHHBIX CETEN MPU PEUICHUH CIOKHBIX 33/]1a4 B aHAJIU3€ JAHHBIX;
[6] - https://rdc.grfc.ru/2023/09/graph_neural nets/ - cnocoObl ¥ BO3MOKHOCTH
WCIIOIb30BaHMS TEXHOJOTHH (J1aTa oopamenus: 22.10.2024);

[7] - https://na-journal.ru/5-2023-informacionnye-tekhnologii/
5118-reshenie-zadach-mashinnogo-obucheniya-dlya-grafov-znanii-na-primere-z
adachi-klassifikacii-tripletov - pemieHue 3ajad MaIIMHHOTO OOYYEHUS IS
rpadoB 3HaAHUI Ha MpuMepe 3aaaun (Hara oopameHus: 20.12.2024);

[8] - https://un-sci.com/ru/2020/08/27/teoriya-grafov-chto-
podtolknulo-shvejczarskogo-matematika-leonarda-ejlera-k-sozdaniyu-ee-osnov/
- nonHas uctopus rpados (nara odpamenus: 20.12.2024);

[9] - Henewmr Kénur, "Teopus koHeuHbIX U OeckoHEeuHBIX Tpados", 1936 rox.
https://keldysh.ru/papers/2020/prep2020_27.pdf - uapopManus 0 KOMIIOHEHTAX
ceTeBbIX TpadoB (aara obOparmienus: 22.10.2024);

[10] - http://mechanoid.su/neural-net-boltzman-restr.html - mammaa boiasiMana
(mara obpamenus: 20.12.2024);

[11] - https://tproger.ru/articles/obzor-bibliotek-dlya-raboty-s-
grafami-v-python--networkx-i-graph-tool - uadopmanus o 6Gubdnuorexkax Python
11t paboThl ¢ rpadamu (ara obpamenus: 21.12.2024);

[12] - https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%
D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%BS5
%D0%B9%D0%BA%D1%81%D1%82%D1%80%D1%8B - AJITOPUTM
HetikcTpsl (nara oOpamenus: 21.12.2024);

[13] - https://colab.research.google.com/drive/1_tdZQPLpXeoN1wUJ

BudR 11TiwynzD9gTV?usp=sharing - HoyTOyk ¢ kojgoMm B Google Colab, Hanucan
aBTOpOoM paboThI (narta co3manus: 21.01 2025).

39

https://habr.com/ru/companies/vk/articles/557280/
https://arxiv.org/abs/1901.00596
https://developers.sber.ru/help/ml/natural-language-processing-techniques
https://sysblok.ru/nlp/semanticheskie-seti-kak-predstavit-znachenija-slov
https://arxiv.org/abs/1801.10247
https://rdc.grfc.ru/2023/09/graph_neural_nets/
https://na-journal.ru/5-2023-informacionnye-tekhnologii/5118-reshenie-zadach-mashinnogo-obucheniya-dlya-grafov-znanii-na-primere-zadachi-klassifikacii-tripletov
https://na-journal.ru/5-2023-informacionnye-tekhnologii/5118-reshenie-zadach-mashinnogo-obucheniya-dlya-grafov-znanii-na-primere-zadachi-klassifikacii-tripletov
https://na-journal.ru/5-2023-informacionnye-tekhnologii/5118-reshenie-zadach-mashinnogo-obucheniya-dlya-grafov-znanii-na-primere-zadachi-klassifikacii-tripletov
https://un-sci.com/ru/2020/08/27/teoriya-grafov-chto-podtolknulo-shvejczarskogo-matematika-leonarda-ejlera-k-sozdaniyu-ee-osnov/
https://un-sci.com/ru/2020/08/27/teoriya-grafov-chto-podtolknulo-shvejczarskogo-matematika-leonarda-ejlera-k-sozdaniyu-ee-osnov/
https://keldysh.ru/papers/2020/prep2020_27.pdf
http://mechanoid.su/neural-net-boltzman-restr.html
https://tproger.ru/articles/obzor-bibliotek-dlya-raboty-s-grafami-v-python--networkx-i-graph-tool
https://tproger.ru/articles/obzor-bibliotek-dlya-raboty-s-grafami-v-python--networkx-i-graph-tool
https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%B5%D0%B9%D0%BA%D1%81%D1%82%D1%80%D1%8B
https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%B5%D0%B9%D0%BA%D1%81%D1%82%D1%80%D1%8B
https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%B5%D0%B9%D0%BA%D1%81%D1%82%D1%80%D1%8B
https://colab.research.google.com/drive/1_tdZQPLpXeoN1wUJBudR1IiwynzD9qTV?usp=sharing
https://colab.research.google.com/drive/1_tdZQPLpXeoN1wUJBudR1IiwynzD9qTV?usp=sharing

	Глава 1: Введение:
	1.1 Актуальность:
	1.2 Гипотеза:
	1.3 Цель:
	1.4 Задачи:
	1.5 Объект исследования: архитектуры машинного обучения.​1.6 Предмет исследования: полносвязные графы и их практическое применение.
	1.7 Методы исследования:

	Глава 2: Теоретическая часть:
	2.1 Введение:
	2.2 Определения из темы графов и их история:
	2.3 Полносвязные графы и машина Больцмана:
	2.4 Машинное обучение и графы:
	2.5 Программирование графов:
	2.6 Заключение:

	Глава 3: Практическая часть:
	3.1 Тестирование полных графов и деревьев контекстов:
	3.2 Исследование ситуаций использования полных графов

	Глава 4. Заключение о проделанной работе:
	Глава 5. Список использованной литературы:

